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Chocolate, Release 0.6.0

Chocolate is a completely asynchronous optimisation framework relying solely on a database to share information
between workers. Chocolate uses no master process for distributing tasks. Every task is completely independent and
only gets its information from the database. Chocolate is thus ideal in controlled computing environments where it is
hard to maintain a master process for the duration of the optimisation.

Chocolate has been designed and optimized for hyperparameter optimization where each function evaluation takes
very long to complete and is difficult to parallelize.

Chocolate is licensed under the 3-Clause BSD License

• Tutorials

– Basics (Start here!)

– Something a bit more realistic

– Optimizing multiple models at once

– Optimizing multiple losses at once

– Let’s go to Tensor Flow

– Retrieving Results

– How to choose your algorithm

– Cross-validating the results

• Installation

• Library Reference

• Release Notes

• About
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CHAPTER 1

Basics

Let start with the very basics. Suppose you want to optimize the parameters of the himmelblau function 𝑓(𝑥, 𝑦) =
(𝑥2 + 𝑦 − 11)2 + (𝑥+ 𝑦2 − 7)2 with Chocolate.

def himmelblau(x, y):
return (x**2 + y - 11)**2 + (x + y**2 - 7)**2

You’d first have to define a search space for parameters x and y.

import chocolate as choco

space = {"x" : choco.uniform(-6, 6),
"y" : choco.uniform(-6, 6)}

Next, you’d establish where the results should be saved. We have two database adaptors one SQLiteConnection
(which we prefer) and one MongoDBConnection (which we also like, of course!).

conn = choco.SQLiteConnection("sqlite:///my_db.db")

Note: While the SQLite adaptor should be used when a common file system is available for all compute nodes,
the MongoDB adaptor is more suited when compute nodes cannot share such file system (e.g. Amazon EC2 spot
instances).

When this overwhelming task is done, you’d choose from our sampling or search algorithms the one that you prefer.
We will use quasi random sampling because its ze best.

sampler = choco.QuasiRandom(conn, space, random_state=42, skip=0)

Now comes the funny part, using Chocolate, a process usually does one and only one evaluation. So you’d just have
to ask the sampler: “Good morning! What’s the next point I should evaluate?”, do the evaluation an tell the sampler
about it.
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token, params = sampler.next()
loss = himmelblau(**params)
sampler.update(token, loss)

Ho yeah, the token is just a unique id we use to trace the parameters in the database. You sure can have a look at it.

>>> print(token)
{"_chocolate_id" : 0}
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CHAPTER 2

Realistic Example

Lets see how one can optimize the hyper parameters of say a gradient boosting tree classifier using scikit-learn and
Chocolate. First we’ll do the necessary imports.

from sklearn.datasets import make_classification
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split

import chocolate as choco

And we’ll define our train function to return the negative of the F1 score as loss function for our Chocolate minimizer.
Nothing fancy here.

def score_gbt(X, y, params):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

gbt = GradientBoostingClassifier(**params)
gbt.fit(X_train, y_train)
y_pred = gbt.predict(X_test)

return -f1_score(y_test, y_pred)

Then we will load our dataset (or make it).

X, y = make_classification(n_samples=80000, random_state=1)

And just as in the Basics tutorial, we’ll decide where the data is stored and the search space for the algorithm. We will
optimize over a mix of continuous and discrete variables.

conn = choco.SQLiteConnection(url="sqlite:///db.db")
s = {"learning_rate" : choco.uniform(0.001, 0.1),

"n_estimators" : choco.quantized_uniform(25, 525, 25),
"max_depth" : choco.quantized_uniform(2, 10, 2),
"subsample" : choco.quantized_uniform(0.7, 1.05, 0.05)}
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Finally, we will define our sampling algorithm,

sampler = choco.QuasiRandom(conn, s, seed=110, skip=3)

request a set of parameters to test,

token, params = sampler.next()

get the loss for that set,

loss = score_gbt(X, y, params)

and signify it to the database.

sampler.update(token, loss)

Running this ~20 line script a bunch of times in completely separate processes will explore the search space to find a
good parameter set for your problem. As simple as that.

6 Chapter 2. Realistic Example



CHAPTER 3

Optimizing Over Multiple Models

Searching for a good configuration for multiple models at the same time is possible using conditional search spaces.
A conditional search space is defined by a list of dictionaries each containing one or more non-chocolate.
Distribution parameter.

3.1 Independent Parameter Search

Say we want to optimize the hyperparameters of SVMs with different kernels or even multiple types of SVMs. We
would define the search space as a list of dictionaries, one for each model.

from sklearn.svm import SVC, LinearSVC
import chocolate as choco

space = [{"algo" : SVC, "kernel" : "rbf",
"C" : choco.log(low=-2, high=10, base=10),
"gamma" : choco.log(low=-9, high=3, base=10)},

{"algo" : SVC, "kernel" : "poly",
"C" : choco.log(low=-2, high=10, base=10),
"gamma" : choco.log(low=-9, high=3, base=10),
"degree" : choco.quantized_uniform(low=1, high=5, step=1),
"coef0" : choco.uniform(low=-1, high=1)},

{"algo" : LinearSVC,
"C" : choco.log(low=-2, high=10, base=10),
"penalty" : choco.choice(["l1", "l2"])}]

Lets now define the optimization function. Since we were able to directly define the classifier type as the parameter
"algo" we can use that directly. Note that the F1 score has to be maximized, however, Chocolate always minimizes
the loss. Thus, we shall return the negative of the F1 score.

from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split

def score_svm(X, y, algo, **params):
(continues on next page)
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(continued from previous page)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

clf = algo(**params)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)

return -f1_score(y_test, y_pred)

Just as in the simpler examples, we will load our dataset, make our connection and explore the configurations using
one of the algorithm.

from sklearn.datasets import make_classification
X, y = make_classification(n_samples=80000, random_state=1)

conn = choco.SQLiteConnection(url="sqlite:///db.db")
sampler = choco.QuasiRandom(conn, space, random_state=42, skip=0)

token, params = sampler.next()
loss = score_svm(X, y, **params)
sampler.update(token, loss)

And just like that multiple models are explored simultaneously.

3.2 Sharing Parameters Between Models

In the last example, all SVMs share parameter C. Some optimizers might take advantage of this information to optimize
this parameters across all SVM types thus accelerating convergence to an optimal configuration. Furthermore, the SVC
algorithm and parameter gamma are shared for "rbf" and "poly" kernels. We can rewrite the last search space
using nested dictionaries to represent the multiple condition levels.

space = {"algo" : {SVC : {"gamma" : choco.log(low=-9, high=3, base=10)},
"kernel" : {"rbf" : None,

"poly" : {"degree" : choco.quantized_
→˓uniform(low=1, high=5, step=1),

"coef0" : choco.uniform(low=-1,
→˓high=1)}},

LinearSVC : {"penalty" : choco.choice(["l1", "l2"])}},
"C" : choco.log(low=-2, high=10, base=10)}

We can still add complexity to the search space by combining multiple dictionaries at the top level, if for example a
configuration does not name an "algo" parameter.

space = [{"algo" : {SVC : {"gamma" : choco.log(low=-9, high=3, base=10)},
"kernel" : {"rbf" : None,

"poly" : {"degree" : choco.quantized_
→˓uniform(low=1, high=5, step=1),

"coef0" : choco.uniform(low=-1,
→˓high=1)}},

LinearSVC : {"penalty" : choco.choice(["l1", "l2"])}},
"C" : choco.log(low=-2, high=10, base=10)},

{"type" : "an_other_optimizer", "param" : choco.uniform(low=-1, high=1)}]

The remaining of the exploration is identical to the previous section.

8 Chapter 3. Optimizing Over Multiple Models



CHAPTER 4

Optimizing Over Multiple Objectives

Chocolate offers multi-objective optimization. This means you can optimize the precision and recall without averaging
them in a f1 score or even the precision and inference time of a model! Lets go straight to how to do that. First, as
always, import we import the necessary modules.

from sklearn.datasets import make_classification
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import precision_score, recall_score
from sklearn.model_selection import train_test_split

import chocolate as choco

Note that we imported both the sklearn.metrics.precision_score() and sklearn.metrics.
recall_score() metrics. The train function is almost identical to the realistic tutorial, except for the two losses.

def score_gbt(X, y, params):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

gbt = GradientBoostingClassifier(**params)
gbt.fit(X_train, y_train)
y_pred = gbt.predict(X_test)

return -precision_score(y_test, y_pred), -recall_score(y_test, y_pred)

Is that it? Yes! This is the only modofication required to optimize over multiple objectives (in addition to using a
multi-objective capable search algorithm).

Then we will load our dataset (or make it).

X, y = make_classification(n_samples=80000, random_state=1)

And just as in the Basics tutorial, we’ll decide where the data is stored and the search space for the algorithm. We will
optimize over a mix of continuous and discrete variables.

9
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conn = choco.SQLiteConnection(url="sqlite:///db.db")
s = {"learning_rate" : choco.uniform(0.001, 0.1),

"n_estimators" : choco.quantized_uniform(25, 525, 25),
"max_depth" : choco.quantized_uniform(2, 10, 2),
"subsample" : choco.quantized_uniform(0.7, 1.05, 0.05)}

Finally, we will define our search algorithm, request a set of parameters to test, get the loss for that set and signify it
to the database.

sampler = choco.MOCMAES(conn, s, mu=5)
token, params = sampler.next()
loss = score_gbt(X, y, params)
sampler.update(token, loss)

Once this script has run a couple of times, the results can be retrieved. Obviously, we cannot find THE ULTIMATE
configuration in our database since multi-objective optimization is all about compromise. In fact, the result of the
optimization is a Pareto front containing all non dominated compromises between the objectives. You can easily
retrieve these compromises using the results_as_dataframe() method of your connection. To find the Pareto
optimal solutions use chocolate.mo.argsortNondominated() function as follow.

conn = choco.SQLiteConnection(url="sqlite:///db.db")
results = conn.results_as_dataframe()
losses = results.as_matrix(("_loss_0", "_loss_1"))
first_front = argsortNondominated(losses, len(losses), first_front_only=True)

This front can be plotted using matplotlib.

plt.scatter(losses[:, 0], losses[:, 1], label="All candidates")
plt.scatter(losses[first_front, 0], losses[first_front, 1], label="Optimal candidates
→˓")
plt.xlabel("precision")
plt.ylabel("recall")
plt.legend()

plt.show()

And, we get this nice graph:

10 Chapter 4. Optimizing Over Multiple Objectives
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CHAPTER 5

Optimizing a Tensor Flow Model

Optimizing the hyperparameters of a TensorFlow model is no harder than any other optimization. The only difficulty
would be the multiple levels where hyperparameters are set. For example, the learning rate is set in the training
function while the number of neurons in a given layer is set while constructing the model.

Let say we want to optimize the hyperparameters of a convolutional neural network over bunch of parameters including
the activation function per layer, the number of neurons in each layer and even the number of layers. First, we need a
function that builds the model.

import tensorflow as tf
from tensorflow import layers

def cnn_model(inputs, targets, dropout_keep_prob, params):
num_output = int(targets.get_shape()[1])
net = inputs

# Get the number of convolution layers from the parameter set
for i in range(0, params["num_conv_layers"]):

with tf.variable_scope("conv_{}".format(i)):
# Create layer using input parameters
net = layers.conv2d(net,

filters=params["conv_{}_num_outputs".format(i)],
kernel_size=params["conv_{}_kernel_size".format(i)],
strides=1,
padding="SAME",
activation=params["conv_{}_activation_fn".format(i)])

net = layers.conv2d(net,
filters=params["conv_{}_num_outputs".format(i)],
kernel_size=params["conv_{}_kernel_size".format(i)],
strides=1,
padding="SAME",
activation=params["conv_{}_activation_fn".format(i)])

with tf.variable_scope("mp_{}".format(i)):
(continues on next page)
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(continued from previous page)

net = layers.max_pooling2d(net,
pool_size=params["mp_{}_kernel_size".

→˓format(i)],
strides=1,
padding="VALID")

# Dropout keep probability is set a train time.
net = tf.nn.dropout(net, keep_prob=dropout_keep_prob)
net = tf.contrib.layers.flatten(net)

# Get the number of fully connectec layers from the parameter set
for i in range(params["num_fc_layers"]):

with tf.variable_scope("fc_{}".format(i)):
# Create layer using input parameters
net = tf.contrib.layers.fully_connected(net, params["fc_{}_num_outputs".

→˓format(i)],
activation_fn=params["fc_{}_activation_fn".

→˓format(i)])

net = tf.nn.dropout(net, keep_prob=dropout_keep_prob)

with tf.variable_scope("output_layer"):
net = tf.contrib.layers.fully_connected(net, num_output, activation_fn=tf.

→˓identity)

return net

Then, we need a function to train the model that also has parameters to optimize such as the learning rate, the decay
rate and the dropout keep probability. (No, it is not the ideal train function, it is just a demo.)

def score_cnn(X, y, params):
sess = tf.InteractiveSession()

train_steps = 20
num_classes = y.shape[1]

X_ = tf.placeholder(tf.float32, shape=(None,) + X.shape[1:])
y_ = tf.placeholder(tf.float32, shape=(None, num_classes))
keep_prob_ = tf.placeholder(tf.float32)
lr_ = tf.placeholder(tf.float32)

logits = cnn_model(X_, y_, keep_prob_, params)

loss_func = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits,
→˓labels=y_))

optimizer_func = tf.train.AdamOptimizer(lr_).minimize(loss_func)

predict = tf.argmax(logits, 1)
correct_prediction = tf.equal(predict, tf.argmax(y_, 1))

init = tf.global_variables_initializer()
sess.run(init)

lr_init = params["initial_learning_rate"]
lr_decay = params["decay_learning_rate"]
decay_steps = params["decay_steps"]

(continues on next page)
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(continued from previous page)

X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2)

with sess.as_default():
for step in range(train_steps):

lr = lr_init * lr_decay ** (step / decay_steps)
for i in range(0, X_train.shape[0], 128):

feed_dict = {lr_: lr, X_: X_train[i:i+128], y_: y_train[i:i+128],
keep_prob_: params["dropout_keep_prob"]}

_, train_loss = sess.run([optimizer_func, loss_func], feed_dict=feed_dict)
valid_loss = 0
for i in range(0, X_valid.shape[0], 128):

feed_dict = {X_: X_valid[i:i+128], y_: y_valid[i:i+128], keep_prob_: 1.0}
valid_loss += sess.run([loss_func], feed_dict=feed_dict)[0]

valid_loss = valid_loss / (X_valid.shape[0]//128)

return {"loss" : valid_loss}

The flexibility of the last pieces of code comes at a price; the number of parameters to set in the search space is quite
large. The next table summarizes all the parameters that needs to be set with their type

Model Type Training Type
num_conv_layers integer initial_learning_rate float
conv_{i}_num_outputs integer decay_learning_rate float
conv_{i}_kernel_size integer decay_steps integer
conv_{i}_activation_fn choice dropout_keep_prob float
mp_{i}_kernel_size integer
num_fc_layers integer
fc_{i}_num_outputs integer
fc_{i}_activation_fn choice

Since there are so many hyperparameters, lets just define a function that will creates the search space. The four
training hyperparameters will sit a the top level of our space and the two defining the number of layers will constitute
our conditions. All others will be set for these conditions.

import chocolate as choco

max_num_conv_layers = 8
max_num_fc_layers = 3

def create_space():
space = {"initial_learning_rate" : choco.log(low=-5, high=-2, base=10),

"decay_learning_rate" : choco.uniform(low=0.7, high=1.0),
"decay_steps" : choco.quantized_log(low=2, high=4, step=1, base=10),
"dropout_keep_prob" : choco.uniform(low=0.5, high=0.95)}

num_conv_layer_cond = dict()
for i in range(1, max_num_conv_layers):

condition = dict()
for j in range(i):

condition["conv_{}_num_outputs".format(j)] = choco.quantized_log(low=3,
→˓high=10, step=1, base=2)

condition["conv_{}_kernel_size".format(j)] = choco.quantized_
→˓uniform(low=1, high=7, step=1)

(continues on next page)
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(continued from previous page)

condition["conv_{}_activation_fn".format(j)] = choco.choice([tf.nn.relu,
→˓tf.nn.elu, tf.nn.tanh])

condition["mp_{}_kernel_size".format(j)] = choco.quantized_uniform(low=2,
→˓high=5, step=1)

num_conv_layer_cond[i] = condition

space["num_conv_layers"] = num_conv_layer_cond

num_fc_layer_cond = dict()
for i in range(1, max_num_fc_layers):

condition = dict()
for j in range(i):

condition["fc_{}_num_outputs".format(j)] = choco.quantized_log(low=3,
→˓high=10, step=1, base=2)

condition["fc_{}_activation_fn".format(j)] = choco.choice([tf.nn.relu, tf.
→˓nn.elu, tf.nn.tanh])

num_fc_layer_cond[i] = condition
space["num_fc_layers"] = num_fc_layer_cond

return space

Guess how large is the largest conditional branch of this search space. It has 36 parameters. 36 parameters is quite a
lot to optimize by hand. The entire tree has 124 parameters! That is why we built Chocolate.

Ho yeah, I forgot about the last bit of code. The one that does the trick.

if __name__ == "__main__":
X, y = some_dataset()

space = create_space()
conn = choco.SQLiteConnection(url="sqlite:///db.db")
sampler = choco.Bayes(conn, space, random_state=42, skip=0)

token, params = sampler.next()
loss = score_cnn(X, y, params)
sampler.update(token, loss)

Nha, there was absolutly nothing new here compared to the last tutorials.
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CHAPTER 6

Retrieving Results

There is nothing easier than retrieving your results with Chocolate. Connections define a method
results_as_dataframe() that takes care of loading the data from your database, transforming it back to your
search space ranges and populating a pandas.DataFrame. This way you can use the powerful pandas and seaborn
libraries to analyse you results and not miss anything. Here is how to get a nice pairwise plot of each parameter with
the loss.

import matplotlib.pyplot as plt
import seaborn as sns; sns.set()

from chocolate import SQLiteConnection

conn = SQLiteConnection("sqlite:///chocolate.db")
results = conn.results_as_dataframe()
results = pd.melt(results, id_vars=["loss"], value_name='value', var_name="variable")

sns.lmplot(x="value", y="loss", data=results, col="variable", col_wrap=3,
→˓sharex=False)

plt.show()

And for those like me who are not patient enough to let the optimization finish, the method
results_as_dataframe() is multiprocess-safe (thanks to our databases)!

15
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CHAPTER 7

What Algorithm to Choose?

The choice of the sampling/search strategy depends strongly on the problem tackled. Ultimately, their are 4 aspects of
the problem to look at:

• the time required to evaluate a model,

• the number of variables,

• the type of variable (continuous or discrete),

• the conditionality of the search space.

Chocolate proposes 5 algorithms with their own advantages and disadvantages:

• Grid sampling applies when all variables are discrete and the number of possibilities is low. A grid search will
perform the exhaustive combinatorial search over all possibilities making the search extremely long even for
medium sized problems.

• Random sampling is an alternative to grid search when the number of discrete parameters to optimize and
the time required for each evaluation is high. When all parameters are discrete, random search will perform
sampling without replacement making it an algorithm of choice when combinatorial exploration is not possible.
With continuous parameters, it is preferable to use quasi random sampling.

• QuasiRandom sampling ensures a much more uniform exploration of the search space than traditional pseudo
random. Thus, quasi random sampling is preferable when not all variables are discrete, the number of dimen-
sions is high and the time required to evaluate a solution is high.

• Bayes search models the search space using gaussian process regression, which allows to have an estimate of
the loss function and the uncertainty on that estimate at every point of the search space. Modeling the search
space suffers from the curse of dimensionality, which makes this method more suitable when the number of
dimensions is low. Moreover, since it models both the expected loss and uncertainty, this search algorithm
converges in few steps on superior configurations, making it a good choice when the time to complete the
evaluation of a parameter configuration is high.

• CMAES search is one of the most powerful black-box optimization algorithm. However, it requires a significant
number of model evaluation (in the order of 10 to 50 times the number of dimensions) to converge to an optimal
solution. This search method is more suitable when the time required for a model evaluation is relatively low.

17
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• MOCMAES search is a multi-objective algorithm optimizing multiple tradeoffs simultaneously. To do that, MOC-
MAES employs 𝜇 CMAES algorithms. Thus requiring even more evaluation to converge to the optimal solution
(in the order of 𝜇 times 10 to 50, times the number of dimensions). This search method is more suitable when
the time required for a model evaluation is relatively low.

In addition to the 5 previous algorithms Chocolate proposes a wrapper that transforms the conditional search space
problem in a multi-armed bandit problem.

• ThompsonSampling is a wrapper around any of the sampling/search algorithms that will allocate more
resources to the exploration of the most promising subspaces. This method will help any of the algorithm in
finding a superior solution in conditional search spaces.

Here is a table that resumes when to use each algorithm.

Algorithm Time Dimensions Continuity Conditions Multi-objective
Grid Low Low Discrete Yes No
Random High High Discrete Yes No
QuasiRandom High High Mixed Yes No
Bayes High Medium Mixed Yes No
CMAES Low Low Mixed No No
MOCMAES Low Low Mixed No Yes
ThompsonSampling – – – Yes –
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CHAPTER 8

Cross-validating Optimization

More often than not, the optimized process results have some variability. To make the optimization process more robust
each parameter set has to be evaluated more than once. Chocolate provides seemless cross-validation in the search
algorithms. The cross-validation object, if provided, intercepts calls to the database and ensures every experiment
is repeated a given number of times. Cross-validations, just like every other experiments, is done in parallel and
asynchroneously. To use cross-validation simply create a cross-validation object and assign it to the search algorithm.

import numpy as np
import chocolate as choco

def evaluate(p1, p2):
return p1 + p2 + np.random.randn()

if __name__ == "__main__":
space = {"p1": choco.uniform(0, 10), "p2": choco.uniform(0, 5)}
connection = choco.SQLiteConnection(url="sqlite:///cv.db")
cv = choco.Repeat(repetitions=3, reduce=np.mean, rep_col="_repetition_id")
s = choco.Grid(space, connection, crossvalidation=cv)

token, params = s.next()
loss = evaluate(**params)
print(token, params, loss)
s.update(token, loss)

The preceding script, if run a couple of times, will output the following tokens and parameters (with probably different
parameters).

{'_repetition_id': 0, '_chocolate_id': 0} {'p1': 8.1935000833291518, 'p2': 4.
→˓2668676560356529} 13.886112047266854
{'_repetition_id': 1, '_chocolate_id': 0} {'p1': 8.1935000833291518, 'p2': 4.
→˓2668676560356529} 11.394347119228563
{'_repetition_id': 2, '_chocolate_id': 0} {'p1': 8.1935000833291518, 'p2': 4.
→˓2668676560356529} 10.790294230308477
{'_repetition_id': 0, '_chocolate_id': 1} {'p1': 7.4031022047092732, 'p2': 0.
→˓14633280691567885} 6.349087103521951

(continues on next page)
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(continued from previous page)

{'_repetition_id': 1, '_chocolate_id': 1} {'p1': 7.4031022047092732, 'p2': 0.
→˓14633280691567885} 6.269733948749414
{'_repetition_id': 2, '_chocolate_id': 1} {'p1': 7.4031022047092732, 'p2': 0.
→˓14633280691567885} 6.895059981273982
{'_repetition_id': 0, '_chocolate_id': 2} {'p1': 2.4955760398088778, 'p2': 4.
→˓4722460515061} 6.82570693646037

Note: The cross-validation is not responsible of shuffling your dataset. You must include this step in your script.

The cross-validation object wraps the connection to reduce the loss of experiments with same "_chocolate_id".
Thus, algorithms never see the repetitions, they only receive a single parameter set with the reduced loss. For the last
example, the algorithms, when interrogating the database, will see the following parameter sets and losses.

{'p1': 8.1935000833291518, 'p2': 4.2668676560356529} 12.023584465601298
{'p1': 7.4031022047092732, 'p2': 0.14633280691567885} 6.5046270111817819
{'p1': 2.4955760398088778, 'p2': 4.4722460515061} 6.82570693646037
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CHAPTER 9

Installation

Chocolate is installed using pip, unfortunately we don’t have any PyPI package yet. Here is the line you have to type

pip install git+https://github.com/AIworx-Labs/chocolate@master

9.1 Dependencies

Chocolate has various dependencies. While the optimizers depends on NumPy, SciPy and Scikit-Learn, the SQLite
database connection depends on dataset and filelock and the MongoDB database connection depends on PyMongo.
Some utilities depend on pandas. All but PyMongo will be installed with Chocolate.
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CHAPTER 10

Library Reference

10.1 Search Space Representation

This module provides common building blocks to define a search space.

Search spaces are defined using dictionaries, where the keys are the parameter names and the values their distribution.
For example, defining a two parameter search space is done as follow

space = {"x": uniform(-5, 5),
"y": quantized_uniform(-2, 3, 0.5)}

A conditional search space can be seen as a tree, where each condition defines a subtree. For example, in the next
figure, three search spaces are presented.

The left tree is the simple two parameter search space defined earlier. The middle tree defines a conditional search
space with a single root condition. Two subspaces exist in this search space, one when the condition is a the other
when the condition is b. Defining such a search space is done using a list of dictionaries as follow

space = [{"cond": "a", "x": uniform(-5, 5)},
{"cond": "b", "y": quantized_uniform(-2, 3, 0.5)}]

The right most tree has two conditions one at its root and another one when the root condition is a. It has a total of
four subspaces. Defining such a search space is done using a hierarchy of dictionaries as follow

23



Chocolate, Release 0.6.0

space = [{"cond": "a", "sub": {"c": {"x": uniform(-5, 5)},
"d": {"z": log(-5, 5, 10)},
"e": {"w": quantized_log(-2, 7, 1, 10)}}},

{"cond": "b", "y": quantized_uniform(-2, 3, 0.5)}

Note that lists can only be used at the root of conditional search spaces, sub-conditions must use the dictionary form.
Moreover, it is not necessary to use the same parameter name for root conditions. For example, the following is a valid
search space

space = [{"cond": "a", "x": uniform(-5, 5)},
{"spam": "b", "y": quantized_uniform(-2, 3, 0.5)}]

The only restriction is that each search space must have a unique combination of conditional parameters and values,
where conditional parameters have non-distribution values. Finally, one and only one subspace can be defined without
condition as follow

space = [{"x": uniform(-5, 5)},
{"cond": "b", "y": quantized_uniform(-2, 3, 0.5)}]

If two or more subspaces share the same conditional key (set of parameters and values) an AssertionError will
be raised uppon building the search space specifying the erroneous key.

class chocolate.Space(spaces)
Representation of the search space.

Encapsulate a multidimentional search space defined on various distributions. Remind that order in standard
python dictionary is undefined, thus the keys of the input dictionaries are sorted() and put in OrderedDict
s for reproductibility.

Parameters spaces – A dictionary or list of dictionaries of parameter names to their distribution.
When a list of multiple dictionaries is provided, the structuring elements of these items must
define a set of unique choices. Structuring elements are defined using non-distribution values.
See examples below.

Raises AssertionError – When two keys at the same level are equal.

An instance of a space is a callable object wich will return a valid parameter set provided a vector of numbers
in the half-open uniform distribution [0, 1).

The number of distinc dimensions can be queried with the len() function. When a list of dictionaries is
provided, this choice constitute the first dimension and each subsequent conditional choice is also a dimension.

Examples

Here is how a simple search space can be defined and the parameters can be retrieved

In [2]: s = Space({"learning_rate": uniform(0.0005, 0.1),
"n_estimators" : quantized_uniform(1, 11, 1)})

In [3]: s([0.1, 0.7])
Out[3]: {'learning_rate': 0.01045, 'n_estimators': 8}

A one level conditional multidimentional search space is defined using a list of dictionaries. Here the choices
are a SMV with linear kernel and a K-nearest neighbor as defined by the string values. Note the use of class
names in the space definition.
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In [2]: from sklearn.svm import SVC

In [3]: from sklearn.neighbors import KNeighborsClassifier

In [4]: s = Space([{"algo": SVC, "kernel": "linear",
"C": log(low=-3, high=5, base=10)},

{"algo": KNeighborsClassifier,
"n_neighbors": quantized_uniform(low=1, high=20, step=1)}

→˓])

The number of dimensions of such search space can be retrieved with the len() function.

In [5]: len(s)
Out[5]: 3

As in the simple search space a valid parameter set can be retrieved by querying the space object with a vector
of length equal to the full search space.

In [6]: s([0.1, 0.2, 0.3])
Out[6]:
{'C': 0.039810717055349734,
'algo': sklearn.svm.classes.SVC,
'kernel': 'linear'}

In [7]: s([0.6, 0.2, 0.3])
Out[7]:
{'algo': sklearn.neighbors.classification.KNeighborsClassifier,
'n_neighbors': 6}

Internal conditions can be modeled using nested dictionaries. For example, the SVM from last example can
have different kernels. The next search space will share the C parameter amongst all SVMs, but will branch on
the kernel type with their individual parameters.

In [2]: s = Space([{"algo": "svm",
"C": log(low=-3, high=5, base=10),
"kernel": {"linear": None,

"rbf": {"gamma": log(low=-2, high=3, base=10)}}},
{"algo": "knn",

"n_neighbors": quantized_uniform(low=1, high=20, step=1)}
→˓])

In [3]: len(s)
Out[3]: 5

In [4]: x = [0.1, 0.2, 0.7, 0.4, 0.5]

In [5]: s(x)
Out[5]: {'C': 0.039810717055349734, 'algo': 'svm', 'gamma': 1.0, 'kernel': 'rbf'}

names(unique=True)
Returns unique sequential names meant to be used as database column names.

Parameters unique – Whether or not to return unique mangled names. Subspaces will still be
mangled.

10.1. Search Space Representation 25

https://docs.python.org/3/library/functions.html#len


Chocolate, Release 0.6.0

Examples

If the length of the space is 2 as follow

In [2]: s = Space({"learning_rate": uniform(0.0005, 0.1),
"n_estimators" : quantized_uniform(1, 11, 1)})

In [3]: s.names()
Out[3]: ['learning_rate', 'n_estimators']

While in conditional spaces, if the length of the space is 5 (one for the choice od subspace and four
independent parameters)

In [4]: s = Space([{"algo": "svm", "kernel": "linear",
"C": log(low=-3, high=5, base=10)},

{"algo": "svm", "kernel": "rbf",
"C": log(low=-3, high=5, base=10),
"gamma": log(low=-2, high=3, base=10)},

{"algo": "knn",
"n_neighbors": quantized_uniform(low=1, high=20,

→˓step=1)}])

In [5]: s.names()
Out[5]:
['_subspace',
'algo_svm_kernel_linear_C',
'algo_svm_kernel_rbf_C',
'algo_svm_kernel_rbf_gamma',
'algo_knn_n_neighbors']

When using methods or classes as parameter values for conditional choices the output might be a little bit
more verbose, however the names are still there.

In [6]: s = Space([{"algo": SVC,
"C": log(low=-3, high=5, base=10),
"kernel": {"linear": None,

"rbf": {"gamma": log(low=-2, high=3, base=10)}
→˓}},

{"algo": KNeighborsClassifier,
"n_neighbors": quantized_uniform(low=1, high=20,

→˓step=1)}])

In [7]: s.names()
Out[7]:
['_subspace',
'algo_<class sklearn_svm_classes_SVC>_C',
'algo_<class sklearn_svm_classes_SVC>_kernel__subspace',
'algo_<class sklearn_svm_classes_SVC>_kernel_kernel_rbf_gamma',
'algo_<class sklearn_neighbors_classification_KNeighborsClassifier>_n_
→˓neighbors']

isactive(x)
Checks within conditional subspaces if, with the given vector, a parameter is active or not.

Parameters x – A vector of numbers in the half-open uniform distribution [0, 1).

Returns A list of booleans telling is the parameter is active or not.
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Example

When using conditional spaces it is often necessary to assess quickly what dimensions are active according
to a given vector. For example, with the following conditional space

In [2]: s = Space([{"algo": "svm",
"C": log(low=-3, high=5, base=10),
"kernel": {"linear": None,

"rbf": {"gamma": log(low=-2, high=3, base=10)}
→˓}},

{"algo": "knn",
"n_neighbors": quantized_uniform(low=1, high=20,

→˓step=1)}])
In [3]: s.names()
Out[3]:
['_subspace',
'algo_svm_C',
'algo_svm_kernel__subspace',
'algo_svm_kernel_kernel_rbf_gamma',
'algo_knn_n_neighbors']

In [4]: x = [0.1, 0.2, 0.7, 0.4, 0.5]

In [5]: s(x)
Out[5]: {'C': 0.039810717055349734, 'algo': 'svm', 'gamma': 1.0, 'kernel':
→˓'rbf'}

In [6]: s.isactive(x)
Out[6]: [True, True, True, True, False]

In [6]: x = [0.6, 0.2, 0.7, 0.4, 0.5]

In [8]: s(x)
Out[8]: {'algo': 'knn', 'n_neighbors': 10}

In [9]: s.isactive(x)
Out[9]: [True, False, False, False, True]

steps()
Returns the steps size between each element of the space dimensions. If a variable is continuous the
returned stepsize is None.

isdiscrete()
Returns whether or not this search space has only discrete dimensions.

subspaces()
Returns every valid combinaition of conditions of the tree- structured search space. Each combinaition is
a list of length equal to the total dimensionality of this search space. Active dimensions are either a fixed
value for conditions or a Distribution for optimizable parameters. Inactive dimensions are None.

Example

The following search space has 3 possible subspaces

In [2]: s = Space([{"algo": "svm",
"C": log(low=-3, high=5, base=10),
"kernel": {"linear": None,

(continues on next page)
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(continued from previous page)

"rbf": {"gamma": log(low=-2, high=3, base=10)}
→˓}},

{"algo": "knn",
"n_neighbors": quantized_uniform(low=1, high=20,

→˓step=1)}])

In [3]: s.names()
Out[3]:
['_subspace',
'algo_svm_C',
'algo_svm_kernel__subspace',
'algo_svm_kernel_kernel_rbf_gamma',
'algo_knn_n_neighbors']

In [4]: s.subspaces()
Out[4]:
[[0.0, log(low=-3, high=5, base=10), 0.0, None, None],
[0.0, log(low=-3, high=5, base=10), 0.5, log(low=-2, high=3, base=10), None],
[0.5, None, None, None, quantized_uniform(low=1, high=20, step=1)]]

class chocolate.Distribution
Base class for every Chocolate distributions.

class chocolate.ContinuousDistribution
Base class for every Chocolate continuous distributions.

class chocolate.QuantizedDistribution
Base class for every Chocolate quantized distributions.

class chocolate.uniform(low, high)
Uniform continuous distribution.

Representation of the uniform continuous distribution in the half-open interval [low, high).

Parameters

• low – Lower bound of the distribution. All values will be greater or equal than low.

• high – Upper bound of the distribution. All values will be lower than high.

__call__(x)
Transforms x a uniform number taken from the half-open continuous interval [0, 1) to the represented
distribution.

Returns The corresponding number in the half-open interval [low, high).

class chocolate.quantized_uniform(low, high, step)
Uniform discrete distribution.

Representation of the uniform continuous distribution in the half-open interval [low, high) with regular spacing
between samples. If

⌈︁
high−low

𝑠𝑡𝑒𝑝

⌉︁
̸= high−low

𝑠𝑡𝑒𝑝 , the last interval will have a different probability than the others. It
is preferable to use high = 𝑁 × step + low where 𝑁 is a whole number.

Parameters

• low – Lower bound of the distribution. All values will be greater or equal than low.

• high – Upper bound of the distribution. All values will be lower than high.

• step – The spacing between each discrete sample.
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__call__(x)
Transforms x, a uniform number taken from the half-open continuous interval [0, 1), to the represented
distribution.

Returns The corresponding number in the discrete half-open interval [low, high) alligned on
step size. If the output number is whole, this method returns an int otherwise a float.

__iter__()
Iterate over all possible values of this discrete distribution in the [0, 1) space. This is the same as

numpy.arange(0, 1, step / (high - low))

__getitem__(i)
Retrieve the i th value of this distribution in the [0, 1) space.

__len__()
Get the number of possible values for this distribution.

class chocolate.log(low, high, base)
Logarithmic uniform continuous distribution.

Representation of the logarithmic uniform continuous distribution in the half-open interval [baselow, basehigh).

Parameters

• low – Lower bound of the distribution. All values will be greater or equal than baselow.

• high – Upper bound of the distribution. All values will be lower than basehigh.

• base – Base of the logarithmic function.

__call__(x)
Transforms x, a uniform number taken from the half-open continuous interval [0, 1), to the represented
distribution.

Returns The corresponding number in the discrete half-open interval [baselow, basehigh) alligned
on step size. If the output number is whole, this method returns an int otherwise a float.

class chocolate.quantized_log(low, high, step, base)
Logarithmic uniform discrete distribution.

Representation of the logarithmic uniform discrete distribution in the half-open interval [baselow, basehigh). with
regular spacing between sampled exponents.

Parameters

• low – Lower bound of the distribution. All values will be greater or equal than baselow.

• high – Upper bound of the distribution. All values will be lower than basehigh.

• step – The spacing between each discrete sample exponent.

• base – Base of the logarithmic function.

__call__(x)
Transforms x, a uniform number taken from the half-open continuous interval [0, 1), to the represented
distribution.

Returns The corresponding number in the discrete half-open interval [baselow, basehigh) alligned
on step size. If the output number is whole, this method returns an int otherwise a float.

__iter__()
Iterate over all possible values of this discrete distribution in the [0, 1) space. This is the same as
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numpy.arange(0, 1, step / (high - low))

__getitem__(i)
Retrieve the i th value of this distribution in the [0, 1) space.

__len__()
Get the number of possible values for this distribution.

class chocolate.choice(values)
Uniform choice distribution between non-numeric samples.

Parameters values – A list of choices to choose uniformly from.

__call__(x)
Transforms x, a uniform number taken from the half-open continuous interval [0, 1), to the represented
distribution.

Returns The corresponding choice from the entered values.

__iter__()
Iterate over all possible values of this discrete distribution in the [0, 1) space. This is the same as

numpy.arange(0, 1, step / (high - low))

__getitem__(i)
Retrieve the i th value of this distribution in the [0, 1) space.

__len__()
Get the number of possible values for this distribution.

10.2 Database Connections

class chocolate.SQLiteConnection(url, result_table=’results’, complemen-
tary_table=’complementary’, space_table=’space’)

Connection to a SQLite database.

Before calling any method you must explicitly lock() the database since SQLite does not handle well concur-
rency.

We use dataset under the hood allowing us to manage a SQLite database just like a list of dictionaries. Thus no
need to predefine any schema nor maintain it explicitly. You can treat this database just as a list of dictionaries.

Parameters

• url (str) – Full url to the database, as described in the SQLAlchemy documentation. The
url is parsed to find the database path. A lock file will be created in the same directory than
the database. In memory databases (url = "sqlite:///" or url = "sqlite://
/:memory:") are not allowed.

• result_table (str) – Table used to store the experiences and their results.

• complementary_table (str) – Table used to store complementary information nec-
essary to the optimizer.

• space_table (str) – Table used to save the optimization Space.

Raises RuntimeError – When an invalid name is given, see error message for precision.
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results_as_dataframe()
Compile all the results and transform them using the space specified in the database. It is safe to use this
method while other experiments are still writing to the database.

Returns A pandas.DataFrame containing all results with its "_chocolate_id" as
"id", their parameters and its loss. Pending results have a loss of None.

lock(timeout=-1, poll_interval=0.05)
Context manager that locks the entire database.

Parameters

• timeout – If the lock could not be acquired in timeout seconds raises a timeout error. If
0 or less, wait forever.

• poll_interval – Number of seconds between lock acquisition tryouts.

Raises TimeoutError – Raised if the lock could not be acquired.

Example:

conn = SQLiteConnection("sqlite:///temp.db")
with conn.lock(timeout=5):

# The database is locked
all_ = conn.all_results()
conn.insert({"new_data" : len(all_)})

# The database is unlocked

all_results()
Get a list of all entries of the result table. The order is undefined.

insert_result(document)
Insert a new document in the result table. The columns must not be defined nor all present. Any new
column will be added to the database and any missing column will get value None.

update_result(filter, values)
Update or add values of given rows in the result table.

Parameters

• filter – An identifier of the rows to update.

• values – A mapping of values to update or add.

count_results()
Get the total number of entries in the result table.

all_complementary()
Get all entries of the complementary information table as a list. The order is undefined.

insert_complementary(document)
Insert a new document (row) in the complementary information table.

find_complementary(filter)
Find a document (row) from the complementary information table.

get_space()
Returns the space used for previous experiments.

Raises AssertionError – If there are more than one space in the database.

insert_space(space)
Insert a space in the database.

10.2. Database Connections 31

http://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#TimeoutError
https://docs.python.org/3/library/exceptions.html#AssertionError


Chocolate, Release 0.6.0

Raises AssertionError – If a space is already present in the database.

clear()
Clear all data from the database.

class chocolate.MongoDBConnection(url, database=’chocolate’, result_col=’results’, comple-
mentary_col=’complementary’, space_col=’space’)

Connection to a MongoDB database.

Parameters

• url (str) – Full url to the database including credentials but omitting the database and
the collection. When using authenticated databases, the url must contain the database and
match the database argument.

• database (str) – The database name in the MongoDB engine.

• result_col (str) – Collection used to store the experiences and their results.

• complementary_col (str) – Collection used to store complementary information nec-
essary to the optimizer.

• space_table (str) – Collection used to save the optimization Space.

results_as_dataframe()
Compile all the results and transform them using the space specified in the database. It is safe to use this
method while other experiments are still writing to the database.

Returns A pandas.DataFrame containing all results with its "_chocolate_id" as
"id", their parameters and its loss. Pending results have a loss of None.

lock(timeout=-1, poll_interval=0.05)
Context manager that locks the entire database.

conn = MongoDBConnection("mongodb://localhost:27017/")
with conn.lock(timeout=5):

# The database is lock
all_ = conn.all_results()
conn.insert({"new_data" : len(all_)})

# The database is unlocked

Parameters

• timeout – If the lock could not be acquired in timeout seconds raises a timeout error. If
0 or less, wait forever.

• poll_interval – Number of seconds between lock acquisition tryouts.

Raises TimeoutError – Raised if the lock could not be acquired.

all_results()
Get all entries of the result table as a list. The order is undefined.

insert_result(document)
Insert a new document in the result table.

update_result(token, values)
Update or add values to given documents in the result table.

Parameters

• token – An identifier of the documents to update.
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• value – A mapping of values to update or add.

count_results()
Get the total number of entries in the result table.

all_complementary()
Get all entries of the complementary information table as a list. The order is undefined.

insert_complementary(document)
Insert a new document in the complementary information table.

find_complementary(filter)
Find a document from the complementary information table.

get_space()
Returns the space used for previous experiments.

Raises AssertionError – If there are more than one space in the database.

insert_space(space)
Insert a space in the database.

Raises AssertionError – If a space is already present in the database.

clear()
Clear all data from the database.

class chocolate.DataFrameConnection(from_file=None)
Connection to a pandas DataFrame.

This connection is meant when it is not possible to use the file system or other type of traditional database (e.g.
a Kaggle scripts) and absolutely not in concurrent processes. In fact, using this connection in different processes
will result in two independent searches not sharing any information.

Parameters from_file – The name of a file containing a pickled data frame connection.

Using this connection requires small adjustments to the proposed main script. When the main process finishes,
all data will vanish if not explicitly writen to disk. Thus, instead of doing a single evaluation, the main process
will incorporate a loop calling the search/sample next method multiple times. Additionally, at the end of the
experiment, either extract the best configuration using results_as_dataframe() or write all the data
using pickle.

results_as_dataframe()
Compile all the results and transform them using the space specified in the database. It is safe to use this
method while other experiments are still writing to the database.

Returns A pandas.DataFrame containing all results with its "_chocolate_id" as
"id", their parameters and its loss. Pending results have a loss of None.

lock(*args, **kwargs)
This function does not lock anything. Do not use in concurrent processes.

all_results()
Get a list of all entries of the result table. The order is undefined.

insert_result(document)
Insert a new document in the result data frame. The columns does not need to be defined nor all present.
Any new column will be added to the database and any missing column will get value None.

update_result(document, value)
Update or add value of given rows in the result data frame.

Parameters
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• document – An identifier of the rows to update.

• value – A mapping of values to update or add.

count_results()
Get the total number of entries in the result table.

all_complementary()
Get all entries of the complementary information table as a list. The order is undefined.

insert_complementary(document)
Insert a new document (row) in the complementary information data frame.

find_complementary(filter)
Find a document (row) from the complementary information data frame.

get_space()
Returns the space used for previous experiments.

insert_space(space)
Insert a space in the database.

Raises AssertionError – If a space is already present.

clear()
Clear all data.

10.3 Sampling Algorithms

class chocolate.Grid(connection, space, crossvalidation=None, clear_db=False)
Regular cartesian grid sampler.

Samples the search space at every point of the grid formed by all dimensions. It requires every dimension to be
a discrete distribution.

Parameters

• connection – A database connection object.

• space – The search space to explore with only discrete dimensions.

• crossvalidation – A cross-validation object that handles experiment repetition.

• clear_db – If set to True and a conflict arise between the provided space and the space
in the database, completely clear the database and set the space to the provided one.

next()
Retrieve the next point to evaluate based on available data in the database.

Returns A tuple containing a unique token and a fully qualified parameter set.

update(token, values)
Update the loss of the parameters associated with token.

Parameters

• token – A token generated by the sampling algorithm for the current parameters

• values – The loss of the current parameter set. The values can be a single Number, a
Sequence or a Mapping. When a sequence is given, the column name is set to “_loss_i”
where “i” is the index of the value. When a mapping is given, each key is prefixed with
the string “_loss_”.
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class chocolate.Random(connection, space, crossvalidation=None, clear_db=False, ran-
dom_state=None)

Random sampler.

Samples the search space randomly. This sampler will draw random numbers for each entry in the database in
order to restore the random state for reproductibility when used concurrently with other random samplers.

If all parameters are discrete, the sampling is made without replacement. Otherwise, the exploration is conducted
independently of conditional search space, meaning that each subspace will receive approximately the same
number of samples.

Parameters

• connection – A database connection object.

• space – The search space to explore with only discrete dimensions. The search space can
be either a dictionary or a chocolate.Space instance.

• crossvalidation – A cross-validation object that handles experiment repetition.

• clear_db – If set to True and a conflict arise between the provided space and the space
in the database, completely clear the database and set the space to the provided one.

• random_state – Either a numpy.random.RandomState instance, an object to ini-
tialize the random state with or None in which case the global state is used.

next()
Retrieve the next point to evaluate based on available data in the database.

Returns A tuple containing a unique token and a fully qualified parameter set.

update(token, values)
Update the loss of the parameters associated with token.

Parameters

• token – A token generated by the sampling algorithm for the current parameters

• values – The loss of the current parameter set. The values can be a single Number, a
Sequence or a Mapping. When a sequence is given, the column name is set to “_loss_i”
where “i” is the index of the value. When a mapping is given, each key is prefixed with
the string “_loss_”.

class chocolate.QuasiRandom(connection, space, crossvalidation=None, clear_db=False,
seed=None, permutations=None, skip=0)

Quasi-Random sampler.

Samples the search space using the generalized Halton low-discrepancy sequence. The underlying sequencer is
the ghalton package, it must be installed separatly. The exploration is conducted independently of conditional
search space, meaning that each subspace will receive approximately the same number of samples.

This sampler will draw random numbers for each entry in the database to restore the random state for repro-
ductibility when used concurrently with other random samplers.

Parameters

• connection – A database connection object.

• space – The search space to explore with only discrete dimensions. The search space can
be either a dictionary or a chocolate.Space instance.

• crossvalidation – A cross-validation object that handles experiment repetition.

• clear_db – If set to True and a conflict arise between the provided space and the space
in the database, completely clear the database and set the space to the provided one.
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• seed – An integer used as seed to initialize the sequencer with or None in which case the
global state is used. This argument is ignored if permutations if provided.

• permutations – Either, the string "ea" in which case the ghalton.EA_PERMS are
used or a valid list of permutations as desbribed in the ghalton package.

• skip – The number of points to skip in the sequence before the first point is sampled.

next()
Retrieve the next point to evaluate based on available data in the database.

Returns A tuple containing a unique token and a fully qualified parameter set.

update(token, values)
Update the loss of the parameters associated with token.

Parameters

• token – A token generated by the sampling algorithm for the current parameters

• values – The loss of the current parameter set. The values can be a single Number, a
Sequence or a Mapping. When a sequence is given, the column name is set to “_loss_i”
where “i” is the index of the value. When a mapping is given, each key is prefixed with
the string “_loss_”.

10.4 Search Algorithms

class chocolate.Bayes(connection, space, crossvalidation=None, clear_db=False, n_bootstrap=10,
utility_function=’ucb’, kappa=2.756, xi=0.1)

Bayesian minimization method with gaussian process regressor.

This method uses scikit-learn’s implementation of gaussian processes with the addition of a conditional kernel
when the provided space is conditional [Lévesque2017]. Two acquisition functions are made available, the
Upper Confidence Bound (UCB) and the Expected Improvement (EI).

Parameters

• connection – A database connection object.

• space – the search space to explore with only discrete dimensions.

• crossvalidation – A cross-validation object that handles experiment repetition.

• clear_db – If set to True and a conflict arise between the provided space and the space
in the database, completely clear the database and set set the space to the provided one.

• n_bootstrap – The number of random iteration done before using gaussian processes.

• utility_function (str) – The acquisition function used for the bayesian optimiza-
tion. Two functions are implemented: “ucb” and “ei”.

• kappa – Kappa parameter for the UCB acquisition function.

• xi – xi parameter for the EI acquisition function.

next()
Retrieve the next point to evaluate based on available data in the database.

Returns A tuple containing a unique token and a fully qualified parameter set.

update(token, values)
Update the loss of the parameters associated with token.
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Parameters

• token – A token generated by the sampling algorithm for the current parameters

• values – The loss of the current parameter set. The values can be a single Number, a
Sequence or a Mapping. When a sequence is given, the column name is set to “_loss_i”
where “i” is the index of the value. When a mapping is given, each key is prefixed with
the string “_loss_”.

class chocolate.CMAES(connection, space, crossvalidation=None, clear_db=False, **params)
Covariance Matrix Adaptation Evolution Strategy minimization method.

A CMA-ES strategy that combines the (1 + 𝜆) paradigm [Igel2007], the mixed integer modification
[Hansen2011] and active covariance update [Arnold2010]. It generates a single new point per iteration and
adds a random step mutation to dimensions that undergoes a too small modification. Even if it includes the
mixed integer modification, CMA-ES does not handle well dimensions without variance and thus it should be
used with care on search spaces with conditional dimensions.

Parameters

• connection – A database connection object.

• space – The search space to explore.

• crossvalidation – A cross-validation object that handles experiment repetition.

• clear_db – If set to True and a conflict arise between the provided space and the space
in the database, completely clear the database and set the space to the provided one.

• **params – Additional parameters to pass to the strategy as described in the following
table, along with default values.

Parame-
ter

Default value Details

d 1 + ndim / 2 Damping for step-size.
ptarg 1 / 3 Taget success rate.
cp ptarg / (2 + ptarg) Step size learning rate.
cc 2 / (ndim + 2) Cumulation time horizon.
ccovp 2 / (ndim**2 + 6) Covariance matrix positive learning

rate.
ccovn 0.4 / (ndim**1.6 +

1)
Covariance matrix negative learning
rate.

pthresh 0.44 Threshold success rate.

Note: To reduce sampling, the constraint to the search space bounding box is enforced by repairing the in-
dividuals and adjusting the taken step. This will lead to a slight over sampling of the boundaries when local
optimums are close to them.

next()
Retrieve the next point to evaluate based on available data in the database.

Returns A tuple containing a unique token and a fully qualified parameter set.

update(token, values)
Update the loss of the parameters associated with token.

Parameters

• token – A token generated by the sampling algorithm for the current parameters
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• values – The loss of the current parameter set. The values can be a single Number, a
Sequence or a Mapping. When a sequence is given, the column name is set to “_loss_i”
where “i” is the index of the value. When a mapping is given, each key is prefixed with
the string “_loss_”.

class chocolate.MOCMAES(connection, space, mu, crossvalidation=None, clear_db=False, **params)
Multi-Objective Covariance Matrix Adaptation Evolution Strategy.

A CMA-ES strategy for multi-objective optimization. It combines the improved step size adaptation [Voss2010]
and the mixed integer modification [Hansen2011]. It generates a single new point per iteration and adds a
random step mutation to dimensions that undergoes a too small modification. Even if it includes the mixed
integer modification, MO-CMA-ES does not handle well dimensions without variance and thus it should be
used with care on search spaces with conditional dimensions.

Parameters

• connection – A database connection object.

• space – The search space to explore.

• crossvalidation – A cross-validation object that handles experiment repetition.

• mu – The number of parents used to generate the candidates. The higher this number is the
better the Parato front coverage will be, but the longer it will take to converge.

• clear_db – If set to True and a conflict arise between the provided space and the space
in the database, completely clear the database and set the space to the provided one.

• **params – Additional parameters to pass to the strategy as described in the following
table, along with default values.

Parameter Default value Details
d 1 + ndim / 2 Damping for step-size.
ptarg 1 / 3 Taget success rate.
cp ptarg / (2 + ptarg) Step size learning rate.
cc 2 / (ndim + 2) Cumulation time horizon.
ccov 2 / (ndim**2 + 6) Covariance matrix learning rate.
pthresh 0.44 Threshold success rate.
indicator mo.

hypervolume_indicator
Indicator function used for ranking can-
didates

Note: To reduce sampling, the constraint to the search space bounding box is enforced by repairing the in-
dividuals and adjusting the taken step. This will lead to a slight over sampling of the boundaries when local
optimums are close to them.

next()
Retrieve the next point to evaluate based on available data in the database.

Returns A tuple containing a unique token and a fully qualified parameter set.

update(token, values)
Update the loss of the parameters associated with token.

Parameters

• token – A token generated by the sampling algorithm for the current parameters

• values – The loss of the current parameter set. The values can be a single Number, a
Sequence or a Mapping. When a sequence is given, the column name is set to “_loss_i”
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where “i” is the index of the value. When a mapping is given, each key is prefixed with
the string “_loss_”.

10.5 Conditional Exploration

class chocolate.ThompsonSampling(algo, connection, space, crossvalidation=None,
clear_db=False, random_state=None, gamma=0.9, ep-
silon=0.05, algo_params=None)

Conditional subspaces exploration strategy.

Thompson sampling wrapper to sample subspaces proportionally to their estimated quality. Each subspace of
a conditional search space will be treated independently. This version uses an estimated moving average for
the reward and forgets the reward of unselected subspaces allowing to model the dynamics of the underlying
optimizers. Thompson sampling for Bernoulli bandit is described in [Chapelle2011].

Parameters

• algo – An algorithm to sample/search each subspace.

• connection – A database connection object.

• space – The conditional search space to explore.

• crossvalidation – A cross-validation object that handles experiment repetition.

• clear_db – If set to True and a conflict arise between the provided space and the space
in the database, completely clear the database and insert set the space to the provided one.

• random_state – An instance of RandomState, an object to initialize the internal ran-
dom state with, or None, in which case the global numpy random state is used.

• gamma – Estimated moving average learning rate. The higher, the faster will react the bandit
to a change of best arm. Should be in [0, 1].

• epsilon – Forget rate for unselected arms. Th higher, the faster unselected arms will
fallback to a symmetric distribution. Should be in [0, 1].

• algo_params – A dictionary of the parameters to pass to the algorithm.

next()
Retrieve the next point to evaluate based on available data in the database.

Returns A tuple containing a unique token and a fully qualified parameter set.

update(token, values)
Update the loss of the parameters associated with token.

Parameters

• token – A token generated by the sampling algorithm for the current parameters

• values – The loss of the current parameter set. The values can be a single Number, a
Sequence or a Mapping. When a sequence is given, the column name is set to “_loss_i”
where “i” is the index of the value. When a mapping is given, each key is prefixed with
the string “_loss_”.
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10.6 Cross-Validation

class chocolate.Repeat(repetitions, reduce=<function mean>, rep_col=’_repetition_id’)
Repeats each experiment a given number of times and reduces the losses for the algorithms.

The repetition cross-validation wraps the connection to handle repetition of experiments in the database. It is
transparent to algorithms as it reduces the loss of repeated parameters and returns a list of results containing a
single instance of each parameter set when all_results() is called. If not all repetitions values are entered
in the database before the next point is generated by the algorithm, the algorithm will see the reduced loss of
the parameters that are completely evaluated only. Alternatively, if no repetition has finished its evaluation, the
algorithm will see a None as loss. Repeat also handles assigning a repetition number to the tokens since the
_chocolate_id will be repeated. Other token values, such as ThompsonSampling’s _arm_id, are also
preserved.

Parameters

• repetitions – The number of repetitions to do for each experiment.

• reduce – The function to reduce the valid losses, usually average or median.

• rep_col – The database column name for the repetition number, it has to be unique.

10.7 Multi-objective Tools

chocolate.mo.argsortNondominated(losses, k, first_front_only=False)
Sort input in Pareto-equal groups.

Sort the first k losses into different nondomination levels using the “Fast Nondominated Sorting Approach”
proposed by Deb et al., see [Deb2002]. This algorithm has a time complexity of 𝑂(𝑀𝑁2), where 𝑀 is the
number of objectives and 𝑁 the number of losses.

Parameters

• losses – A list of losses to select from.

• k – The number of elements to select.

• first_front_only – If True sort only the first front and exit.

Returns A list of Pareto fronts (lists) containing the losses index.

chocolate.mo.hypervolume_indicator(front, **kargs)
Indicator function using the hypervolume value.

Computes the contribution of each of the front candidates to the front hypervolume. The hypervolume indicator
assumes minimization.

Parameters

• front – A list of Pareto equal candidate solutions.

• ref – The origin from which to compute the hypervolume (optional). If not given, ref is set
to the maximum value in each dimension + 1.

Returns The index of the least contributing candidate.

chocolate.mo.hypervolume(pointset, ref)
Computes the hypervolume of a point set.

Parameters

• pointset – A list of points.
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• ref – The origin from which to comute the hypervolume. This value should be larger than
all values in the point set.

Returns The hypervolume of this point set.

Search Space Representation

Space Representation of the search space.
Distribution Base class for every Chocolate distributions.
ContinuousDistribution Base class for every Chocolate continuous distributions.
QuantizedDistribution Base class for every Chocolate quantized distributions.
uniform Uniform continuous distribution.
quantized_uniform Uniform discrete distribution.
log Logarithmic uniform continuous distribution.
quantized_log Logarithmic uniform discrete distribution.
choice Uniform choice distribution between non-numeric sam-

ples.

Database Connections

SQLiteConnection Connection to a SQLite database.
MongoDBConnection Connection to a MongoDB database.
DataFrameConnection Connection to a pandas DataFrame.

Sampling Algorithms

Grid Regular cartesian grid sampler.
Random Random sampler.
QuasiRandom Quasi-Random sampler.

Search Algorithms

Bayes Bayesian minimization method with gaussian process
regressor.

CMAES Covariance Matrix Adaptation Evolution Strategy min-
imization method.

MOCMAES Multi-Objective Covariance Matrix Adaptation Evolu-
tion Strategy.

Conditional Exploration

ThompsonSampling Conditional subspaces exploration strategy.

Cross-Validation
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Repeat Repeats each experiment a given number of times and
reduces the losses for the algorithms.

Multi-objective Tools

mo.argsortNondominated Sort input in Pareto-equal groups.
mo.hypervolume_indicator Indicator function using the hypervolume value.
mo.hypervolume Computes the hypervolume of a point set.
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CHAPTER 12

About

Chocolate is developped at NovaSyst.
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