

Chocolate Documentation

Chocolate is a completely asynchronous optimisation framework relying solely on a
database to share information between workers. Chocolate uses no master process for
distributing tasks. Every task is completely independent and only gets its
information from the database. Chocolate is thus ideal in controlled computing
environments where it is hard to maintain a master process for the duration
of the optimisation.

Chocolate has been designed and optimized for hyperparameter optimization where
each function evaluation takes very long to complete and is difficult to parallelize.

Chocolate is licensed under the 3-Clause BSD License [https://opensource.org/licenses/BSD-3-Clause]

	Tutorials

	Basics (Start here!)

	Something a bit more realistic

	Optimizing multiple models at once

	Optimizing multiple losses at once

	Let’s go to Tensor Flow

	Retrieving Results

	How to choose your algorithm

	Cross-validating the results

	Installation

	Library Reference

	Release Notes

	About

Basics

Let start with the very basics. Suppose you want to optimize the parameters of the himmelblau function
\(f(x, y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2\) with Chocolate.

def himmelblau(x, y):
 return (x**2 + y - 11)**2 + (x + y**2 - 7)**2

You’d first have to define a search space
for parameters x and y.

import chocolate as choco

space = {"x" : choco.uniform(-6, 6),
 "y" : choco.uniform(-6, 6)}

Next, you’d establish where the results should be saved. We have two database
adaptors one SQLiteConnection (which we prefer) and one
MongoDBConnection (which we also like, of course!).

conn = choco.SQLiteConnection("sqlite:///my_db.db")

Note

While the SQLite adaptor should be used when a common file system is
available for all compute nodes, the MongoDB adaptor is more suited
when compute nodes cannot share such file system (e.g. Amazon EC2 spot
instances).

When this overwhelming task is done, you’d choose from our sampling or search algorithms the one that you prefer. We will use quasi
random sampling because its ze best.

sampler = choco.QuasiRandom(conn, space, random_state=42, skip=0)

Now comes the funny part, using Chocolate, a process usually does one and only
one evaluation. So you’d just have to ask the sampler: “Good morning! What’s the
next point I should evaluate?”, do the evaluation an tell the sampler about
it.

token, params = sampler.next()
loss = himmelblau(**params)
sampler.update(token, loss)

Ho yeah, the token is just a unique id we use to trace the parameters in the
database. You sure can have a look at it.

>>> print(token)
{"_chocolate_id" : 0}

Realistic Example

Lets see how one can optimize the hyper parameters of say a gradient boosting
tree classifier [http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html] using scikit-learn and Chocolate.
First we’ll do the necessary imports.

from sklearn.datasets import make_classification
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split

import chocolate as choco

And we’ll define our train function to return the negative of the
F1 score [http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html]
as loss function for our Chocolate minimizer. Nothing fancy here.

def score_gbt(X, y, params):
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

 gbt = GradientBoostingClassifier(**params)
 gbt.fit(X_train, y_train)
 y_pred = gbt.predict(X_test)

 return -f1_score(y_test, y_pred)

Then we will load our dataset (or make [http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html] it).

X, y = make_classification(n_samples=80000, random_state=1)

And just as in the Basics tutorial, we’ll decide where the data is
stored and the search space for the
algorithm. We will optimize over a mix of continuous and discrete variables.

conn = choco.SQLiteConnection(url="sqlite:///db.db")
s = {"learning_rate" : choco.uniform(0.001, 0.1),
 "n_estimators" : choco.quantized_uniform(25, 525, 25),
 "max_depth" : choco.quantized_uniform(2, 10, 2),
 "subsample" : choco.quantized_uniform(0.7, 1.05, 0.05)}

Finally, we will define our sampling algorithm,

sampler = choco.QuasiRandom(conn, s, seed=110, skip=3)

request a set of parameters to test,

token, params = sampler.next()

get the loss for that set,

loss = score_gbt(X, y, params)

and signify it to the database.

sampler.update(token, loss)

Running this ~20 line script a bunch of times in completely separate processes
will explore the search space to find a good parameter set for your problem. As
simple as that.

Optimizing Over Multiple Models

Searching for a good configuration for multiple models at the same time is
possible using conditional search spaces. A conditional search space is
defined by a list of dictionaries each containing one or more
non-chocolate.Distribution parameter.

Independent Parameter Search

Say we want to optimize the
hyperparameters of SVMs [http://scikit-learn.org/stable/modules/svm.html]
with different kernels or even multiple types of SVMs. We would define the
search space as a list of dictionaries,
one for each model.

from sklearn.svm import SVC, LinearSVC
import chocolate as choco

space = [{"algo" : SVC, "kernel" : "rbf",
 "C" : choco.log(low=-2, high=10, base=10),
 "gamma" : choco.log(low=-9, high=3, base=10)},
 {"algo" : SVC, "kernel" : "poly",
 "C" : choco.log(low=-2, high=10, base=10),
 "gamma" : choco.log(low=-9, high=3, base=10),
 "degree" : choco.quantized_uniform(low=1, high=5, step=1),
 "coef0" : choco.uniform(low=-1, high=1)},
 {"algo" : LinearSVC,
 "C" : choco.log(low=-2, high=10, base=10),
 "penalty" : choco.choice(["l1", "l2"])}]

Lets now define the optimization function. Since we were able to directly
define the classifier type as the parameter "algo" we can use that directly.
Note that the F1 score has to be maximized, however, Chocolate always minimizes
the loss. Thus, we shall return the negative of the F1 score.

from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split

def score_svm(X, y, algo, **params):
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

 clf = algo(**params)
 clf.fit(X_train, y_train)
 y_pred = clf.predict(X_test)

 return -f1_score(y_test, y_pred)

Just as in the simpler examples, we will load our dataset, make our
connection and explore the configurations using one of the algorithm.

from sklearn.datasets import make_classification
X, y = make_classification(n_samples=80000, random_state=1)

conn = choco.SQLiteConnection(url="sqlite:///db.db")
sampler = choco.QuasiRandom(conn, space, random_state=42, skip=0)

token, params = sampler.next()
loss = score_svm(X, y, **params)
sampler.update(token, loss)

And just like that multiple models are explored simultaneously.

Sharing Parameters Between Models

In the last example, all SVMs share parameter C. Some optimizers might
take advantage of this information to optimize this parameters across all SVM
types thus accelerating convergence to an optimal configuration. Furthermore,
the SVC algorithm and parameter gamma are shared for "rbf" and
"poly" kernels. We can rewrite the last search space using nested
dictionaries to represent the multiple condition levels.

space = {"algo" : {SVC : {"gamma" : choco.log(low=-9, high=3, base=10)},
 "kernel" : {"rbf" : None,
 "poly" : {"degree" : choco.quantized_uniform(low=1, high=5, step=1),
 "coef0" : choco.uniform(low=-1, high=1)}},
 LinearSVC : {"penalty" : choco.choice(["l1", "l2"])}},
 "C" : choco.log(low=-2, high=10, base=10)}

We can still add complexity to the search space by combining multiple
dictionaries at the top level, if for example a configuration does not name an
"algo" parameter.

space = [{"algo" : {SVC : {"gamma" : choco.log(low=-9, high=3, base=10)},
 "kernel" : {"rbf" : None,
 "poly" : {"degree" : choco.quantized_uniform(low=1, high=5, step=1),
 "coef0" : choco.uniform(low=-1, high=1)}},
 LinearSVC : {"penalty" : choco.choice(["l1", "l2"])}},
 "C" : choco.log(low=-2, high=10, base=10)},

 {"type" : "an_other_optimizer", "param" : choco.uniform(low=-1, high=1)}]

The remaining of the exploration is identical to the previous section.

Optimizing Over Multiple Objectives

Chocolate offers multi-objective optimization. This means you can optimize
the precision and recall without averaging them in a f1 score or even
the precision and inference time of a model! Lets go straight to how to do
that. First, as always, import we import the necessary modules.

from sklearn.datasets import make_classification
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import precision_score, recall_score
from sklearn.model_selection import train_test_split

import chocolate as choco

Note that we imported both the sklearn.metrics.precision_score() and
sklearn.metrics.recall_score() metrics. The train function is almost
identical to the realistic tutorial,
except for the two losses.

def score_gbt(X, y, params):
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

 gbt = GradientBoostingClassifier(**params)
 gbt.fit(X_train, y_train)
 y_pred = gbt.predict(X_test)

 return -precision_score(y_test, y_pred), -recall_score(y_test, y_pred)

Is that it? Yes! This is the only modofication required to optimize over
multiple objectives (in addition to using a multi-objective capable search
algorithm).

Then we will load our dataset (or make [http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html] it).

X, y = make_classification(n_samples=80000, random_state=1)

And just as in the Basics tutorial, we’ll decide where the data is
stored and the search space for the
algorithm. We will optimize over a mix of continuous and discrete variables.

conn = choco.SQLiteConnection(url="sqlite:///db.db")
s = {"learning_rate" : choco.uniform(0.001, 0.1),
 "n_estimators" : choco.quantized_uniform(25, 525, 25),
 "max_depth" : choco.quantized_uniform(2, 10, 2),
 "subsample" : choco.quantized_uniform(0.7, 1.05, 0.05)}

Finally, we will define our search algorithm, request a set of parameters to test,
get the loss for that set and signify it to the database.

sampler = choco.MOCMAES(conn, s, mu=5)
token, params = sampler.next()
loss = score_gbt(X, y, params)
sampler.update(token, loss)

Once this script has run a couple of times, the results can be retrieved. Obviously,
we cannot find THE ULTIMATE configuration in our database since multi-objective
optimization is all about compromise. In fact, the result of the optimization is a
Pareto front [https://en.wikipedia.org/wiki/Pareto_efficiency] containing all
non dominated compromises between the objectives. You can easily retrieve these
compromises using the results_as_dataframe()
method of your connection. To find the Pareto optimal solutions use
chocolate.mo.argsortNondominated() function as follow.

conn = choco.SQLiteConnection(url="sqlite:///db.db")
results = conn.results_as_dataframe()
losses = results.as_matrix(("_loss_0", "_loss_1"))
first_front = argsortNondominated(losses, len(losses), first_front_only=True)

This front can be plotted using matplotlib.

plt.scatter(losses[:, 0], losses[:, 1], label="All candidates")
plt.scatter(losses[first_front, 0], losses[first_front, 1], label="Optimal candidates")
plt.xlabel("precision")
plt.ylabel("recall")
plt.legend()

plt.show()

And, we get this nice graph:

[image: ../_images/precision_recall_pareto.png]

Optimizing a Tensor Flow Model

Optimizing the hyperparameters of a TensorFlow [http://tensorflow.org]
model is no harder than any other optimization. The only difficulty would be
the multiple levels where hyperparameters are set. For example, the learning
rate is set in the training function while the number of neurons in a given
layer is set while constructing the model.

Let say we want to optimize the hyperparameters of a convolutional neural
network over bunch of parameters including the activation function per layer,
the number of neurons in each layer and even the number of layers. First, we
need a function that builds the model.

import tensorflow as tf
from tensorflow import layers

def cnn_model(inputs, targets, dropout_keep_prob, params):
 num_output = int(targets.get_shape()[1])
 net = inputs

 # Get the number of convolution layers from the parameter set
 for i in range(0, params["num_conv_layers"]):
 with tf.variable_scope("conv_{}".format(i)):
 # Create layer using input parameters
 net = layers.conv2d(net,
 filters=params["conv_{}_num_outputs".format(i)],
 kernel_size=params["conv_{}_kernel_size".format(i)],
 strides=1,
 padding="SAME",
 activation=params["conv_{}_activation_fn".format(i)])

 net = layers.conv2d(net,
 filters=params["conv_{}_num_outputs".format(i)],
 kernel_size=params["conv_{}_kernel_size".format(i)],
 strides=1,
 padding="SAME",
 activation=params["conv_{}_activation_fn".format(i)])

 with tf.variable_scope("mp_{}".format(i)):
 net = layers.max_pooling2d(net,
 pool_size=params["mp_{}_kernel_size".format(i)],
 strides=1,
 padding="VALID")

 # Dropout keep probability is set a train time.
 net = tf.nn.dropout(net, keep_prob=dropout_keep_prob)
 net = tf.contrib.layers.flatten(net)

 # Get the number of fully connectec layers from the parameter set
 for i in range(params["num_fc_layers"]):
 with tf.variable_scope("fc_{}".format(i)):
 # Create layer using input parameters
 net = tf.contrib.layers.fully_connected(net, params["fc_{}_num_outputs".format(i)],
 activation_fn=params["fc_{}_activation_fn".format(i)])

 net = tf.nn.dropout(net, keep_prob=dropout_keep_prob)

 with tf.variable_scope("output_layer"):
 net = tf.contrib.layers.fully_connected(net, num_output, activation_fn=tf.identity)

 return net

Then, we need a function to train the model that also has parameters to
optimize such as the learning rate, the decay rate and the dropout keep
probability. (No, it is not the ideal train function, it is just a demo.)

def score_cnn(X, y, params):
 sess = tf.InteractiveSession()

 train_steps = 20
 num_classes = y.shape[1]

 X_ = tf.placeholder(tf.float32, shape=(None,) + X.shape[1:])
 y_ = tf.placeholder(tf.float32, shape=(None, num_classes))
 keep_prob_ = tf.placeholder(tf.float32)
 lr_ = tf.placeholder(tf.float32)

 logits = cnn_model(X_, y_, keep_prob_, params)

 loss_func = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y_))
 optimizer_func = tf.train.AdamOptimizer(lr_).minimize(loss_func)

 predict = tf.argmax(logits, 1)
 correct_prediction = tf.equal(predict, tf.argmax(y_, 1))

 init = tf.global_variables_initializer()
 sess.run(init)

 lr_init = params["initial_learning_rate"]
 lr_decay = params["decay_learning_rate"]
 decay_steps = params["decay_steps"]

 X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2)

 with sess.as_default():
 for step in range(train_steps):
 lr = lr_init * lr_decay ** (step / decay_steps)
 for i in range(0, X_train.shape[0], 128):
 feed_dict = {lr_: lr, X_: X_train[i:i+128], y_: y_train[i:i+128],
 keep_prob_: params["dropout_keep_prob"]}

 _, train_loss = sess.run([optimizer_func, loss_func], feed_dict=feed_dict)
 valid_loss = 0
 for i in range(0, X_valid.shape[0], 128):
 feed_dict = {X_: X_valid[i:i+128], y_: y_valid[i:i+128], keep_prob_: 1.0}
 valid_loss += sess.run([loss_func], feed_dict=feed_dict)[0]
 valid_loss = valid_loss / (X_valid.shape[0]//128)

 return {"loss" : valid_loss}

The flexibility of the last pieces of code comes at a price; the number of
parameters to set in the search space is quite large. The next table
summarizes all the parameters that needs to be set with their type

	Model

	Type

	Training

	Type

	num_conv_layers

	integer

	initial_learning_rate

	float

	conv_{i}_num_outputs

	integer

	decay_learning_rate

	float

	conv_{i}_kernel_size

	integer

	decay_steps

	integer

	conv_{i}_activation_fn

	choice

	dropout_keep_prob

	float

	mp_{i}_kernel_size

	integer

	
	

	num_fc_layers

	integer

	
	

	fc_{i}_num_outputs

	integer

	
	

	fc_{i}_activation_fn

	choice

	
	

Since there are so many hyperparameters, lets just define a function that will
creates the search space. The four training hyperparameters will sit a the top
level of our space and the two defining the number of layers will constitute
our conditions. All others will be set for these conditions.

import chocolate as choco

max_num_conv_layers = 8
max_num_fc_layers = 3

def create_space():
 space = {"initial_learning_rate" : choco.log(low=-5, high=-2, base=10),
 "decay_learning_rate" : choco.uniform(low=0.7, high=1.0),
 "decay_steps" : choco.quantized_log(low=2, high=4, step=1, base=10),
 "dropout_keep_prob" : choco.uniform(low=0.5, high=0.95)}

 num_conv_layer_cond = dict()
 for i in range(1, max_num_conv_layers):
 condition = dict()
 for j in range(i):
 condition["conv_{}_num_outputs".format(j)] = choco.quantized_log(low=3, high=10, step=1, base=2)
 condition["conv_{}_kernel_size".format(j)] = choco.quantized_uniform(low=1, high=7, step=1)
 condition["conv_{}_activation_fn".format(j)] = choco.choice([tf.nn.relu, tf.nn.elu, tf.nn.tanh])
 condition["mp_{}_kernel_size".format(j)] = choco.quantized_uniform(low=2, high=5, step=1)

 num_conv_layer_cond[i] = condition

 space["num_conv_layers"] = num_conv_layer_cond

 num_fc_layer_cond = dict()
 for i in range(1, max_num_fc_layers):
 condition = dict()
 for j in range(i):
 condition["fc_{}_num_outputs".format(j)] = choco.quantized_log(low=3, high=10, step=1, base=2)
 condition["fc_{}_activation_fn".format(j)] = choco.choice([tf.nn.relu, tf.nn.elu, tf.nn.tanh])

 num_fc_layer_cond[i] = condition
 space["num_fc_layers"] = num_fc_layer_cond

 return space

Guess how large is the largest conditional branch of this search space. It has
36 parameters. 36 parameters is quite a lot to optimize by hand. The entire tree
has 124 parameters! That is why we built Chocolate.

Ho yeah, I forgot about the last bit of code. The one that does the trick.

if __name__ == "__main__":
 X, y = some_dataset()

 space = create_space()
 conn = choco.SQLiteConnection(url="sqlite:///db.db")
 sampler = choco.Bayes(conn, space, random_state=42, skip=0)

 token, params = sampler.next()
 loss = score_cnn(X, y, params)
 sampler.update(token, loss)

Nha, there was absolutly nothing new here compared to the last tutorials.

Retrieving Results

There is nothing easier than retrieving your results with Chocolate. Connections
define a method results_as_dataframe() that takes care of loading the data
from your database, transforming it back to your search space ranges and populating
a pandas.DataFrame [http://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame]. This way you can use the powerful pandas [http://pandas.pydata.org/]
and seaborn [http://seaborn.pydata.org/] libraries to analyse you results and not miss anything.
Here is how to get a nice pairwise plot of each parameter with the loss.

import matplotlib.pyplot as plt
import seaborn as sns; sns.set()

from chocolate import SQLiteConnection

conn = SQLiteConnection("sqlite:///chocolate.db")
results = conn.results_as_dataframe()
results = pd.melt(results, id_vars=["loss"], value_name='value', var_name="variable")

sns.lmplot(x="value", y="loss", data=results, col="variable", col_wrap=3, sharex=False)

plt.show()

And for those like me who are not patient enough to let the optimization finish,
the method results_as_dataframe() is multiprocess-safe
(thanks to our databases)!

What Algorithm to Choose?

The choice of the sampling/search strategy depends strongly on the problem tackled.
Ultimately, their are 4 aspects of the problem to look at:

	the time required to evaluate a model,

	the number of variables,

	the type of variable (continuous or discrete),

	the conditionality of the search space.

Chocolate proposes 5 algorithms with their own advantages and disadvantages:

	Grid sampling applies when all variables are discrete and the number
of possibilities is low. A grid search will perform the exhaustive combinatorial search
over all possibilities making the search extremely long even for medium sized problems.

	Random sampling is an alternative to grid search when the number of
discrete parameters to optimize and the time required for each evaluation is high. When
all parameters are discrete, random search will perform sampling without replacement making
it an algorithm of choice when combinatorial exploration is not possible. With continuous
parameters, it is preferable to use quasi random sampling.

	QuasiRandom sampling ensures a much more uniform exploration of the
search space than traditional pseudo random. Thus, quasi random sampling is preferable
when not all variables are discrete, the number of dimensions is high and the time
required to evaluate a solution is high.

	Bayes search models the search space using gaussian process
regression, which allows to have an estimate of the loss function and the uncertainty on
that estimate at every point of the search space. Modeling the search space suffers from
the curse of dimensionality, which makes this method more suitable when the number of
dimensions is low. Moreover, since it models both the expected loss and uncertainty, this
search algorithm converges in few steps on superior configurations, making it a good choice
when the time to complete the evaluation of a parameter configuration is high.

	CMAES search is one of the most powerful black-box optimization
algorithm. However, it requires a significant number of model evaluation (in the order of
10 to 50 times the number of dimensions) to converge to an optimal solution. This
search method is more suitable when the time required for a model evaluation is relatively
low.

	MOCMAES search is a multi-objective algorithm optimizing multiple
tradeoffs simultaneously. To do that, MOCMAES employs \(\mu\) CMAES algorithms. Thus
requiring even more evaluation to converge to the optimal solution (in the order of
\(\mu\) times 10 to 50, times the number of dimensions). This search method is more
suitable when the time required for a model evaluation is relatively low.

In addition to the 5 previous algorithms Chocolate proposes a wrapper that transforms the
conditional search space problem in a multi-armed bandit problem [https://en.wikipedia.org/wiki/Multi-armed_bandit].

	ThompsonSampling is a wrapper around any of the sampling/search
algorithms that will allocate more resources to the exploration of the most promising
subspaces. This method will help any of the algorithm in finding a superior solution
in conditional search spaces.

Here is a table that resumes when to use each algorithm.

	Algorithm

	Time

	Dimensions

	Continuity

	Conditions

	Multi-objective

	Grid

	Low

	Low

	Discrete

	Yes

	No

	Random

	High

	High

	Discrete

	Yes

	No

	QuasiRandom

	High

	High

	Mixed

	Yes

	No

	Bayes

	High

	Medium

	Mixed

	Yes

	No

	CMAES

	Low

	Low

	Mixed

	No

	No

	MOCMAES

	Low

	Low

	Mixed

	No

	Yes

	ThompsonSampling

	–

	–

	–

	Yes

	–

Cross-validating Optimization

More often than not, the optimized process results have some variability. To make the
optimization process more robust each parameter set has to be evaluated more than once.
Chocolate provides seemless cross-validation in the search algorithms. The cross-validation
object, if provided, intercepts calls to the database and ensures every experiment is
repeated a given number of times. Cross-validations, just like every other experiments, is
done in parallel and asynchroneously. To use cross-validation simply create a
cross-validation object and assign it to the search algorithm.

import numpy as np
import chocolate as choco

def evaluate(p1, p2):
 return p1 + p2 + np.random.randn()

if __name__ == "__main__":
 space = {"p1": choco.uniform(0, 10), "p2": choco.uniform(0, 5)}
 connection = choco.SQLiteConnection(url="sqlite:///cv.db")
 cv = choco.Repeat(repetitions=3, reduce=np.mean, rep_col="_repetition_id")
 s = choco.Grid(space, connection, crossvalidation=cv)

 token, params = s.next()
 loss = evaluate(**params)
 print(token, params, loss)
 s.update(token, loss)

The preceding script, if run a couple of times, will output the following tokens and parameters
(with probably different parameters).

{'_repetition_id': 0, '_chocolate_id': 0} {'p1': 8.1935000833291518, 'p2': 4.2668676560356529} 13.886112047266854
{'_repetition_id': 1, '_chocolate_id': 0} {'p1': 8.1935000833291518, 'p2': 4.2668676560356529} 11.394347119228563
{'_repetition_id': 2, '_chocolate_id': 0} {'p1': 8.1935000833291518, 'p2': 4.2668676560356529} 10.790294230308477
{'_repetition_id': 0, '_chocolate_id': 1} {'p1': 7.4031022047092732, 'p2': 0.14633280691567885} 6.349087103521951
{'_repetition_id': 1, '_chocolate_id': 1} {'p1': 7.4031022047092732, 'p2': 0.14633280691567885} 6.269733948749414
{'_repetition_id': 2, '_chocolate_id': 1} {'p1': 7.4031022047092732, 'p2': 0.14633280691567885} 6.895059981273982
{'_repetition_id': 0, '_chocolate_id': 2} {'p1': 2.4955760398088778, 'p2': 4.4722460515061} 6.82570693646037

Note

The cross-validation is not responsible of shuffling your dataset. You must include
this step in your script.

The cross-validation object wraps the connection to reduce the loss of experiments with same
"_chocolate_id". Thus, algorithms never see the repetitions, they only receive a single
parameter set with the reduced loss. For the last example, the algorithms,
when interrogating the database, will see the following parameter sets and losses.

{'p1': 8.1935000833291518, 'p2': 4.2668676560356529} 12.023584465601298
{'p1': 7.4031022047092732, 'p2': 0.14633280691567885} 6.5046270111817819
{'p1': 2.4955760398088778, 'p2': 4.4722460515061} 6.82570693646037

Installation

Chocolate is installed using pip [http://www.pip-installer.org/en/latest/],
unfortunately we don’t have any PyPI package yet. Here is the line you have to type

pip install git+https://github.com/AIworx-Labs/chocolate@master

Dependencies

Chocolate has various dependencies. While the optimizers depends on NumPy,
SciPy and Scikit-Learn, the SQLite database connection depends on dataset and
filelock and the MongoDB database connection depends on PyMongo. Some utilities
depend on pandas. All but PyMongo will be installed with Chocolate.

Library Reference

Search Space Representation

	Space

	Representation of the search space.

	Distribution

	Base class for every Chocolate distributions.

	ContinuousDistribution

	Base class for every Chocolate continuous distributions.

	QuantizedDistribution

	Base class for every Chocolate quantized distributions.

	uniform

	Uniform continuous distribution.

	quantized_uniform

	Uniform discrete distribution.

	log

	Logarithmic uniform continuous distribution.

	quantized_log

	Logarithmic uniform discrete distribution.

	choice

	Uniform choice distribution between non-numeric samples.

Database Connections

	SQLiteConnection

	Connection to a SQLite database.

	MongoDBConnection

	Connection to a MongoDB database.

	DataFrameConnection

	Connection to a pandas DataFrame.

Sampling Algorithms

	Grid

	Regular cartesian grid sampler.

	Random

	Random sampler.

	QuasiRandom

	Quasi-Random sampler.

Search Algorithms

	Bayes

	Bayesian minimization method with gaussian process regressor.

	CMAES

	Covariance Matrix Adaptation Evolution Strategy minimization method.

	MOCMAES

	Multi-Objective Covariance Matrix Adaptation Evolution Strategy.

Conditional Exploration

	ThompsonSampling

	Conditional subspaces exploration strategy.

Cross-Validation

	Repeat

	Repeats each experiment a given number of times and reduces the losses for the algorithms.

Multi-objective Tools

	mo.argsortNondominated

	Sort input in Pareto-equal groups.

	mo.hypervolume_indicator

	Indicator function using the hypervolume value.

	mo.hypervolume

	Computes the hypervolume of a point set.

Search Space Representation

This module provides common building blocks to define a search space.

Search spaces are defined using dictionaries, where the keys are the parameter
names and the values their distribution. For example, defining a two
parameter search space is done as follow

space = {"x": uniform(-5, 5),
 "y": quantized_uniform(-2, 3, 0.5)}

A conditional search space can be seen as a tree, where each condition
defines a subtree. For example, in the next figure, three search spaces
are presented.

[image: ../_images/search-space-tree.png]
The left tree is the simple two parameter search space defined earlier. The
middle tree defines a conditional search space with a single root condition.
Two subspaces exist in this search space, one when the condition is a the
other when the condition is b. Defining such a search space is done using
a list of dictionaries as follow

space = [{"cond": "a", "x": uniform(-5, 5)},
 {"cond": "b", "y": quantized_uniform(-2, 3, 0.5)}]

The right most tree has two conditions one at its root and another one when
the root condition is a. It has a total of four subspaces. Defining such a
search space is done using a hierarchy of dictionaries as follow

space = [{"cond": "a", "sub": {"c": {"x": uniform(-5, 5)},
 "d": {"z": log(-5, 5, 10)},
 "e": {"w": quantized_log(-2, 7, 1, 10)}}},
 {"cond": "b", "y": quantized_uniform(-2, 3, 0.5)}

Note that lists can only be used at the root of conditional search spaces,
sub-conditions must use the dictionary form. Moreover, it is not necessary to
use the same parameter name for root conditions. For example, the following
is a valid search space

space = [{"cond": "a", "x": uniform(-5, 5)},
 {"spam": "b", "y": quantized_uniform(-2, 3, 0.5)}]

The only restriction is that each search space must have a unique combination
of conditional parameters and values, where conditional parameters have
non-distribution values. Finally, one and only one subspace can be defined
without condition as follow

space = [{"x": uniform(-5, 5)},
 {"cond": "b", "y": quantized_uniform(-2, 3, 0.5)}]

If two or more subspaces share the same conditional key (set of parameters
and values) an AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] will be raised uppon building the
search space specifying the erroneous key.

	
class chocolate.Space(spaces)

	Representation of the search space.

Encapsulate a multidimentional search space defined on various
distributions. Remind that order in standard python dictionary is
undefined, thus the keys of the input dictionaries are
sorted() [https://docs.python.org/3/library/functions.html#sorted] and put in OrderedDict s for reproductibility.

	Parameters

	spaces – A dictionary or list of dictionaries of parameter names to
their distribution. When a list of multiple dictionaries is
provided, the structuring elements of these items must define a
set of unique choices. Structuring elements are defined using
non-distribution values. See examples below.

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – When two keys at the same level are equal.

An instance of a space is a callable object wich will return a valid
parameter set provided a vector of numbers in the half-open uniform
distribution \([0, 1)\).

The number of distinc dimensions can be queried with the len() [https://docs.python.org/3/library/functions.html#len]
function. When a list of dictionaries is provided, this choice constitute
the first dimension and each subsequent conditional choice is also a
dimension.

Examples

Here is how a simple search space can be defined and the parameters
can be retrieved

In [2]: s = Space({"learning_rate": uniform(0.0005, 0.1),
 "n_estimators" : quantized_uniform(1, 11, 1)})

In [3]: s([0.1, 0.7])
Out[3]: {'learning_rate': 0.01045, 'n_estimators': 8}

A one level conditional multidimentional search space is defined using
a list of dictionaries. Here the choices are a SMV with linear kernel
and a K-nearest neighbor as defined by the string values. Note the use
of class names in the space definition.

In [2]: from sklearn.svm import SVC

In [3]: from sklearn.neighbors import KNeighborsClassifier

In [4]: s = Space([{"algo": SVC, "kernel": "linear",
 "C": log(low=-3, high=5, base=10)},
 {"algo": KNeighborsClassifier,
 "n_neighbors": quantized_uniform(low=1, high=20, step=1)}])

The number of dimensions of such search space can be retrieved with
the len() [https://docs.python.org/3/library/functions.html#len] function.

In [5]: len(s)
Out[5]: 3

As in the simple search space a valid parameter set can be retrieved
by querying the space object with a vector of length equal to the full
search space.

In [6]: s([0.1, 0.2, 0.3])
Out[6]:
{'C': 0.039810717055349734,
 'algo': sklearn.svm.classes.SVC,
 'kernel': 'linear'}

In [7]: s([0.6, 0.2, 0.3])
Out[7]:
{'algo': sklearn.neighbors.classification.KNeighborsClassifier,
 'n_neighbors': 6}

Internal conditions can be modeled using nested dictionaries. For
example, the SVM from last example can have different kernels. The
next search space will share the C parameter amongst all SVMs, but
will branch on the kernel type with their individual parameters.

In [2]: s = Space([{"algo": "svm",
 "C": log(low=-3, high=5, base=10),
 "kernel": {"linear": None,
 "rbf": {"gamma": log(low=-2, high=3, base=10)}}},
 {"algo": "knn",
 "n_neighbors": quantized_uniform(low=1, high=20, step=1)}])

In [3]: len(s)
Out[3]: 5

In [4]: x = [0.1, 0.2, 0.7, 0.4, 0.5]

In [5]: s(x)
Out[5]: {'C': 0.039810717055349734, 'algo': 'svm', 'gamma': 1.0, 'kernel': 'rbf'}

	
names(unique=True)

	Returns unique sequential names meant to be used as database column
names.

	Parameters

	unique – Whether or not to return unique mangled names. Subspaces will
still be mangled.

Examples

If the length of the space is 2 as follow

In [2]: s = Space({"learning_rate": uniform(0.0005, 0.1),
 "n_estimators" : quantized_uniform(1, 11, 1)})

In [3]: s.names()
Out[3]: ['learning_rate', 'n_estimators']

While in conditional spaces, if the length of the space is 5 (one
for the choice od subspace and four independent parameters)

In [4]: s = Space([{"algo": "svm", "kernel": "linear",
 "C": log(low=-3, high=5, base=10)},
 {"algo": "svm", "kernel": "rbf",
 "C": log(low=-3, high=5, base=10),
 "gamma": log(low=-2, high=3, base=10)},
 {"algo": "knn",
 "n_neighbors": quantized_uniform(low=1, high=20, step=1)}])

In [5]: s.names()
Out[5]:
['_subspace',
 'algo_svm_kernel_linear_C',
 'algo_svm_kernel_rbf_C',
 'algo_svm_kernel_rbf_gamma',
 'algo_knn_n_neighbors']

When using methods or classes as parameter values for conditional
choices the output might be a little bit more verbose, however the
names are still there.

In [6]: s = Space([{"algo": SVC,
 "C": log(low=-3, high=5, base=10),
 "kernel": {"linear": None,
 "rbf": {"gamma": log(low=-2, high=3, base=10)}}},

 {"algo": KNeighborsClassifier,
 "n_neighbors": quantized_uniform(low=1, high=20, step=1)}])

In [7]: s.names()
Out[7]:
['_subspace',
 'algo_<class sklearn_svm_classes_SVC>_C',
 'algo_<class sklearn_svm_classes_SVC>_kernel__subspace',
 'algo_<class sklearn_svm_classes_SVC>_kernel_kernel_rbf_gamma',
 'algo_<class sklearn_neighbors_classification_KNeighborsClassifier>_n_neighbors']

	
isactive(x)

	Checks within conditional subspaces if, with the given vector, a
parameter is active or not.

	Parameters

	x – A vector of numbers in the half-open uniform
distribution \([0, 1)\).

	Returns

	A list of booleans telling is the parameter is active or not.

Example

When using conditional spaces it is often necessary to assess
quickly what dimensions are active according to a given vector.
For example, with the following conditional space

In [2]: s = Space([{"algo": "svm",
 "C": log(low=-3, high=5, base=10),
 "kernel": {"linear": None,
 "rbf": {"gamma": log(low=-2, high=3, base=10)}}},
 {"algo": "knn",
 "n_neighbors": quantized_uniform(low=1, high=20, step=1)}])
In [3]: s.names()
Out[3]:
['_subspace',
 'algo_svm_C',
 'algo_svm_kernel__subspace',
 'algo_svm_kernel_kernel_rbf_gamma',
 'algo_knn_n_neighbors']

In [4]: x = [0.1, 0.2, 0.7, 0.4, 0.5]

In [5]: s(x)
Out[5]: {'C': 0.039810717055349734, 'algo': 'svm', 'gamma': 1.0, 'kernel': 'rbf'}

In [6]: s.isactive(x)
Out[6]: [True, True, True, True, False]

In [6]: x = [0.6, 0.2, 0.7, 0.4, 0.5]

In [8]: s(x)
Out[8]: {'algo': 'knn', 'n_neighbors': 10}

In [9]: s.isactive(x)
Out[9]: [True, False, False, False, True]

	
steps()

	Returns the steps size between each element of the space
dimensions. If a variable is continuous the returned stepsize is None [https://docs.python.org/3/library/constants.html#None].

	
isdiscrete()

	Returns whether or not this search space has only discrete
dimensions.

	
subspaces()

	Returns every valid combinaition of conditions of the tree-
structured search space. Each combinaition is a list of length equal
to the total dimensionality of this search space. Active dimensions
are either a fixed value for conditions or a Distribution for
optimizable parameters. Inactive dimensions are None [https://docs.python.org/3/library/constants.html#None].

Example

The following search space has 3 possible subspaces

In [2]: s = Space([{"algo": "svm",
 "C": log(low=-3, high=5, base=10),
 "kernel": {"linear": None,
 "rbf": {"gamma": log(low=-2, high=3, base=10)}}},
 {"algo": "knn",
 "n_neighbors": quantized_uniform(low=1, high=20, step=1)}])

In [3]: s.names()
Out[3]:
['_subspace',
 'algo_svm_C',
 'algo_svm_kernel__subspace',
 'algo_svm_kernel_kernel_rbf_gamma',
 'algo_knn_n_neighbors']

In [4]: s.subspaces()
Out[4]:
[[0.0, log(low=-3, high=5, base=10), 0.0, None, None],
 [0.0, log(low=-3, high=5, base=10), 0.5, log(low=-2, high=3, base=10), None],
 [0.5, None, None, None, quantized_uniform(low=1, high=20, step=1)]]

	
class chocolate.Distribution

	Base class for every Chocolate distributions.

	
class chocolate.ContinuousDistribution

	Base class for every Chocolate continuous distributions.

	
class chocolate.QuantizedDistribution

	Base class for every Chocolate quantized distributions.

	
class chocolate.uniform(low, high)

	Uniform continuous distribution.

Representation of the uniform continuous distribution in the half-open
interval \([\text{low}, \text{high})\).

	Parameters

	
	low – Lower bound of the distribution. All values will be
greater or equal than low.

	high – Upper bound of the distribution. All values will be
lower than high.

	
__call__(x)

	Transforms x a uniform number taken from the half-open continuous
interval \([0, 1)\) to the represented distribution.

	Returns

	The corresponding number in the half-open interval
\([\text{low}, \text{high})\).

	
class chocolate.quantized_uniform(low, high, step)

	Uniform discrete distribution.

Representation of the uniform continuous distribution in the half-open
interval \([\text{low}, \text{high})\) with regular spacing between
samples. If \(\left\lceil \frac{\text{high} - \text{low}}{step}
\right\rceil \neq \frac{\text{high} - \text{low}}{step}\), the last
interval will have a different probability than the others. It is
preferable to use \(\text{high} = N \times \text{step} +
\text{low}\) where \(N\) is a whole number.

	Parameters

	
	low – Lower bound of the distribution. All values will be
greater or equal than low.

	high – Upper bound of the distribution. All values will be
lower than high.

	step – The spacing between each discrete sample.

	
__call__(x)

	Transforms x, a uniform number taken from the half-open continuous
interval \([0, 1)\), to the represented distribution.

	Returns

	The corresponding number in the discrete half-open interval
\([\text{low}, \text{high})\) alligned on step size. If the
output number is whole, this method returns an int [https://docs.python.org/3/library/functions.html#int]
otherwise a
float [https://docs.python.org/3/library/functions.html#float].

	
__iter__()

	Iterate over all possible values of this discrete distribution in
the \([0, 1)\) space. This is the same as

numpy.arange(0, 1, step / (high - low))

	
__getitem__(i)

	Retrieve the i th value of this distribution in the
\([0, 1)\) space.

	
__len__()

	Get the number of possible values for this distribution.

	
class chocolate.log(low, high, base)

	Logarithmic uniform continuous distribution.

Representation of the logarithmic uniform continuous distribution in the
half-open interval \([\text{base}^\text{low},
\text{base}^\text{high})\).

	Parameters

	
	low – Lower bound of the distribution. All values will be
greater or equal than \(\text{base}^\text{low}\).

	high – Upper bound of the distribution. All values will be
lower than \(\text{base}^\text{high}\).

	base – Base of the logarithmic function.

	
__call__(x)

	Transforms x, a uniform number taken from the half-open continuous
interval \([0, 1)\), to the represented distribution.

	Returns

	The corresponding number in the discrete half-open interval
\([\text{base}^\text{low}, \text{base}^\text{high})\)
alligned on step size. If the output number is whole, this
method returns an int [https://docs.python.org/3/library/functions.html#int] otherwise a float [https://docs.python.org/3/library/functions.html#float].

	
class chocolate.quantized_log(low, high, step, base)

	Logarithmic uniform discrete distribution.

Representation of the logarithmic uniform discrete distribution in the
half-open interval \([\text{base}^\text{low},
\text{base}^\text{high})\). with regular spacing between sampled
exponents.

	Parameters

	
	low – Lower bound of the distribution. All values will be
greater or equal than \(\text{base}^\text{low}\).

	high – Upper bound of the distribution. All values will be
lower than \(\text{base}^\text{high}\).

	step – The spacing between each discrete sample exponent.

	base – Base of the logarithmic function.

	
__call__(x)

	Transforms x, a uniform number taken from the half-open
continuous interval \([0, 1)\), to the represented distribution.

	Returns

	The corresponding number in the discrete half-open interval
\([\text{base}^\text{low}, \text{base}^\text{high})\)
alligned on step size. If the output number is whole, this
method returns an int [https://docs.python.org/3/library/functions.html#int] otherwise a float [https://docs.python.org/3/library/functions.html#float].

	
__iter__()

	Iterate over all possible values of this discrete distribution in
the \([0, 1)\) space. This is the same as

numpy.arange(0, 1, step / (high - low))

	
__getitem__(i)

	Retrieve the i th value of this distribution in the
\([0, 1)\) space.

	
__len__()

	Get the number of possible values for this distribution.

	
class chocolate.choice(values)

	Uniform choice distribution between non-numeric samples.

	Parameters

	values – A list of choices to choose uniformly from.

	
__call__(x)

	Transforms x, a uniform number taken from the half-open
continuous interval \([0, 1)\), to the represented distribution.

	Returns

	The corresponding choice from the entered values.

	
__iter__()

	Iterate over all possible values of this discrete distribution in
the \([0, 1)\) space. This is the same as

numpy.arange(0, 1, step / (high - low))

	
__getitem__(i)

	Retrieve the i th value of this distribution in the
\([0, 1)\) space.

	
__len__()

	Get the number of possible values for this distribution.

Database Connections

	
class chocolate.SQLiteConnection(url, result_table='results', complementary_table='complementary', space_table='space')

	Connection to a SQLite database.

Before calling any method you must explicitly lock() the database
since SQLite does not handle well concurrency.

We use dataset [https://dataset.readthedocs.io] under the hood allowing
us to manage a SQLite database just like a list of dictionaries. Thus no
need to predefine any schema nor maintain it explicitly. You can treat this
database just as a list of dictionaries.

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – Full url to the database, as described in the SQLAlchemy
documentation [http://docs.sqlalchemy.org/en/latest/core/engines.html#sqlite].
The url is parsed to find the database path. A lock file will be
created in the same directory than the database. In memory
databases (url = "sqlite:///" or url = "sqlite:///:memory:")
are not allowed.

	result_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – Table used to store the experiences and their results.

	complementary_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – Table used to store complementary information necessary
to the optimizer.

	space_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – Table used to save the optimization Space.

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – When an invalid name is given, see error message for precision.

	
results_as_dataframe()

	Compile all the results and transform them using the space specified in the database. It is safe to
use this method while other experiments are still writing to the database.

	Returns

	A pandas.DataFrame [http://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame] containing all results with its "_chocolate_id" as "id",
their parameters and its loss. Pending results have a loss of None [https://docs.python.org/3/library/constants.html#None].

	
lock(timeout=-1, poll_interval=0.05)

	Context manager that locks the entire database.

	Parameters

	
	timeout – If the lock could not be acquired in timeout seconds
raises a timeout error. If 0 or less, wait forever.

	poll_interval – Number of seconds between lock acquisition tryouts.

	Raises

	TimeoutError [https://docs.python.org/3/library/exceptions.html#TimeoutError] – Raised if the lock could not be acquired.

Example:

conn = SQLiteConnection("sqlite:///temp.db")
with conn.lock(timeout=5):
 # The database is locked
 all_ = conn.all_results()
 conn.insert({"new_data" : len(all_)})

The database is unlocked

	
all_results()

	Get a list of all entries of the result table. The order is
undefined.

	
insert_result(document)

	Insert a new document in the result table. The columns must not
be defined nor all present. Any new column will be added to the
database and any missing column will get value None.

	
update_result(filter, values)

	Update or add values of given rows in the result table.

	Parameters

	
	filter – An identifier of the rows to update.

	values – A mapping of values to update or add.

	
count_results()

	Get the total number of entries in the result table.

	
all_complementary()

	Get all entries of the complementary information table as a list.
The order is undefined.

	
insert_complementary(document)

	Insert a new document (row) in the complementary information table.

	
find_complementary(filter)

	Find a document (row) from the complementary information table.

	
get_space()

	Returns the space used for previous experiments.

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If there are more than one space in the database.

	
insert_space(space)

	Insert a space in the database.

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If a space is already present in the database.

	
clear()

	Clear all data from the database.

	
class chocolate.MongoDBConnection(url, database='chocolate', result_col='results', complementary_col='complementary', space_col='space')

	Connection to a MongoDB database.

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – Full url to the database including credentials but omitting the
database and the collection. When using authenticated databases, the url must
contain the database and match the database argument.

	database (str [https://docs.python.org/3/library/stdtypes.html#str]) – The database name in the MongoDB engine.

	result_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – Collection used to store the experiences and their
results.

	complementary_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – Collection used to store complementary information
necessary to the optimizer.

	space_table (str [https://docs.python.org/3/library/stdtypes.html#str]) – Collection used to save the optimization Space.

	
results_as_dataframe()

	Compile all the results and transform them using the space specified in the database. It is safe to
use this method while other experiments are still writing to the database.

	Returns

	A pandas.DataFrame [http://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame] containing all results with its "_chocolate_id" as "id",
their parameters and its loss. Pending results have a loss of None [https://docs.python.org/3/library/constants.html#None].

	
lock(timeout=-1, poll_interval=0.05)

	Context manager that locks the entire database.

conn = MongoDBConnection("mongodb://localhost:27017/")
with conn.lock(timeout=5):
 # The database is lock
 all_ = conn.all_results()
 conn.insert({"new_data" : len(all_)})

The database is unlocked

	Parameters

	
	timeout – If the lock could not be acquired in timeout seconds
raises a timeout error. If 0 or less, wait forever.

	poll_interval – Number of seconds between lock acquisition tryouts.

	Raises

	TimeoutError [https://docs.python.org/3/library/exceptions.html#TimeoutError] – Raised if the lock could not be acquired.

	
all_results()

	Get all entries of the result table as a list. The order is
undefined.

	
insert_result(document)

	Insert a new document in the result table.

	
update_result(token, values)

	Update or add values to given documents in the result table.

	Parameters

	
	token – An identifier of the documents to update.

	value – A mapping of values to update or add.

	
count_results()

	Get the total number of entries in the result table.

	
all_complementary()

	Get all entries of the complementary information table as a list.
The order is undefined.

	
insert_complementary(document)

	Insert a new document in the complementary information table.

	
find_complementary(filter)

	Find a document from the complementary information table.

	
get_space()

	Returns the space used for previous experiments.

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If there are more than one space in the database.

	
insert_space(space)

	Insert a space in the database.

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If a space is already present in the database.

	
clear()

	Clear all data from the database.

	
class chocolate.DataFrameConnection(from_file=None)

	Connection to a pandas DataFrame.

This connection is meant when it is not possible to use the file system
or other type of traditional database (e.g. a Kaggle [http://kaggle.com]
scripts) and absolutely not in concurrent processes. In fact, using this
connection in different processes will result in two independent searches
not sharing any information.

	Parameters

	from_file – The name of a file containing a pickled data frame
connection.

Using this connection requires small adjustments to the proposed main
script. When the main process finishes, all data will vanish if not
explicitly writen to disk. Thus, instead of doing a single evaluation,
the main process will incorporate a loop calling the search/sample
next method multiple times. Additionally, at the end of the experiment,
either extract the best configuration using results_as_dataframe()
or write all the data using pickle [https://docs.python.org/3/library/pickle.html#module-pickle].

	
results_as_dataframe()

	Compile all the results and transform them using the space specified in the database. It is safe to
use this method while other experiments are still writing to the database.

	Returns

	A pandas.DataFrame [http://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame] containing all results with its "_chocolate_id" as "id",
their parameters and its loss. Pending results have a loss of None [https://docs.python.org/3/library/constants.html#None].

	
lock(*args, **kwargs)

	This function does not lock anything. Do not use in concurrent
processes.

	
all_results()

	Get a list of all entries of the result table. The order is
undefined.

	
insert_result(document)

	Insert a new document in the result data frame. The columns does
not need to be defined nor all present. Any new column will be added
to the database and any missing column will get value None.

	
update_result(document, value)

	Update or add value of given rows in the result data frame.

	Parameters

	
	document – An identifier of the rows to update.

	value – A mapping of values to update or add.

	
count_results()

	Get the total number of entries in the result table.

	
all_complementary()

	Get all entries of the complementary information table as a list.
The order is undefined.

	
insert_complementary(document)

	Insert a new document (row) in the complementary information data frame.

	
find_complementary(filter)

	Find a document (row) from the complementary information data frame.

	
get_space()

	Returns the space used for previous experiments.

	
insert_space(space)

	Insert a space in the database.

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – If a space is already present.

	
clear()

	Clear all data.

Sampling Algorithms

	
class chocolate.Grid(connection, space, crossvalidation=None, clear_db=False)

	Regular cartesian grid sampler.

Samples the search space at every point of the grid formed by all
dimensions. It requires every dimension to be a discrete distribution.

	Parameters

	
	connection – A database connection object.

	space – The search space to explore with only discrete dimensions.

	crossvalidation – A cross-validation object that handles experiment
repetition.

	clear_db – If set to True [https://docs.python.org/3/library/constants.html#True] and a conflict arise between the
provided space and the space in the database, completely clear the
database and set the space to the provided one.

	
next()

	Retrieve the next point to evaluate based on available data in the
database.

	Returns

	A tuple containing a unique token and a fully qualified parameter set.

	
update(token, values)

	Update the loss of the parameters associated with token.

	Parameters

	
	token – A token generated by the sampling algorithm for the current
parameters

	values – The loss of the current parameter set. The values can be a
single Number, a Sequence or a Mapping.
When a sequence is given, the column name is set to “_loss_i” where
“i” is the index of the value. When a mapping is given, each key
is prefixed with the string “_loss_”.

	
class chocolate.Random(connection, space, crossvalidation=None, clear_db=False, random_state=None)

	Random sampler.

Samples the search space randomly. This sampler will draw random numbers
for each entry in the database in order to restore the random state for
reproductibility when used concurrently with other random samplers.

If all parameters are discrete, the sampling is made without replacement.
Otherwise, the exploration is conducted independently of conditional
search space, meaning that each subspace will receive approximately the
same number of samples.

	Parameters

	
	connection – A database connection object.

	space – The search space to explore with only discrete dimensions. The
search space can be either a dictionary or a
chocolate.Space instance.

	crossvalidation – A cross-validation object that handles experiment
repetition.

	clear_db – If set to True [https://docs.python.org/3/library/constants.html#True] and a conflict arise between the
provided space and the space in the database, completely clear the
database and set the space to the provided one.

	random_state – Either a numpy.random.RandomState instance, an
object to initialize the random state with or
None [https://docs.python.org/3/library/constants.html#None] in which case the global state is used.

	
next()

	Retrieve the next point to evaluate based on available data in the
database.

	Returns

	A tuple containing a unique token and a fully qualified parameter set.

	
update(token, values)

	Update the loss of the parameters associated with token.

	Parameters

	
	token – A token generated by the sampling algorithm for the current
parameters

	values – The loss of the current parameter set. The values can be a
single Number, a Sequence or a Mapping.
When a sequence is given, the column name is set to “_loss_i” where
“i” is the index of the value. When a mapping is given, each key
is prefixed with the string “_loss_”.

	
class chocolate.QuasiRandom(connection, space, crossvalidation=None, clear_db=False, seed=None, permutations=None, skip=0)

	Quasi-Random sampler.

Samples the search space using the generalized Halton low-discrepancy
sequence. The underlying sequencer is the ghalton [http://github.com/fmder/ghalton] package, it must be installed
separatly. The exploration is conducted independently of conditional
search space, meaning that each subspace will receive approximately the
same number of samples.

This sampler will draw random numbers for each entry in the database to
restore the random state for reproductibility when used concurrently with
other random samplers.

	Parameters

	
	connection – A database connection object.

	space – The search space to explore with only discrete dimensions. The
search space can be either a dictionary or a
chocolate.Space instance.

	crossvalidation – A cross-validation object that handles experiment
repetition.

	clear_db – If set to True [https://docs.python.org/3/library/constants.html#True] and a conflict arise between the
provided space and the space in the database, completely clear the
database and set the space to the provided one.

	seed – An integer used as seed to initialize the sequencer with or
None [https://docs.python.org/3/library/constants.html#None] in which case the global state is used. This argument
is ignored if permutations if provided.

	permutations – Either, the string "ea" in which case the
ghalton.EA_PERMS are used or a valid list of permutations
as desbribed in the ghalton package.

	skip – The number of points to skip in the sequence before the first
point is sampled.

	
next()

	Retrieve the next point to evaluate based on available data in the
database.

	Returns

	A tuple containing a unique token and a fully qualified parameter set.

	
update(token, values)

	Update the loss of the parameters associated with token.

	Parameters

	
	token – A token generated by the sampling algorithm for the current
parameters

	values – The loss of the current parameter set. The values can be a
single Number, a Sequence or a Mapping.
When a sequence is given, the column name is set to “_loss_i” where
“i” is the index of the value. When a mapping is given, each key
is prefixed with the string “_loss_”.

Search Algorithms

	
class chocolate.Bayes(connection, space, crossvalidation=None, clear_db=False, n_bootstrap=10, utility_function='ucb', kappa=2.756, xi=0.1)

	Bayesian minimization method with gaussian process regressor.

This method uses scikit-learn’s implementation of gaussian processes
with the addition of a conditional kernel when the provided space is conditional
[Lévesque2017]. Two acquisition functions are made available, the Upper
Confidence Bound (UCB) and the Expected Improvement (EI).

	Parameters

	
	connection – A database connection object.

	space – the search space to explore with only discrete dimensions.

	crossvalidation – A cross-validation object that handles experiment
repetition.

	clear_db – If set to True [https://docs.python.org/3/library/constants.html#True] and a conflict arise between the
provided space and the space in the database, completely clear the
database and set set the space to the provided one.

	n_bootstrap – The number of random iteration done before using gaussian processes.

	utility_function (str [https://docs.python.org/3/library/stdtypes.html#str]) – The acquisition function used for the bayesian optimization.
Two functions are implemented: “ucb” and “ei”.

	kappa – Kappa parameter for the UCB acquisition function.

	xi – xi parameter for the EI acquisition function.

	Lévesque2017

	Lévesque, Durand, Gagné and Sabourin. Bayesian Optimization for
Conditional Hyperparameter Spaces. 2017

	
next()

	Retrieve the next point to evaluate based on available data in the
database.

	Returns

	A tuple containing a unique token and a fully qualified parameter set.

	
update(token, values)

	Update the loss of the parameters associated with token.

	Parameters

	
	token – A token generated by the sampling algorithm for the current
parameters

	values – The loss of the current parameter set. The values can be a
single Number, a Sequence or a Mapping.
When a sequence is given, the column name is set to “_loss_i” where
“i” is the index of the value. When a mapping is given, each key
is prefixed with the string “_loss_”.

	
class chocolate.CMAES(connection, space, crossvalidation=None, clear_db=False, **params)

	Covariance Matrix Adaptation Evolution Strategy minimization method.

A CMA-ES strategy that combines the \((1 + \lambda)\) paradigm
[Igel2007], the mixed integer modification [Hansen2011] and active
covariance update [Arnold2010]. It generates a single new point per
iteration and adds a random step mutation to dimensions that undergoes a
too small modification. Even if it includes the mixed integer
modification, CMA-ES does not handle well dimensions without variance and
thus it should be used with care on search spaces with conditional
dimensions.

	Parameters

	
	connection – A database connection object.

	space – The search space to explore.

	crossvalidation – A cross-validation object that handles experiment
repetition.

	clear_db – If set to True [https://docs.python.org/3/library/constants.html#True] and a conflict arise between the
provided space and the space in the database, completely clear the
database and set the space to the provided one.

	**params – Additional parameters to pass to the strategy as described in
the following table, along with default values.

	Parameter

	Default value

	Details

	d

	1 + ndim / 2

	Damping for step-size.

	ptarg

	1 / 3

	Taget success rate.

	cp

	ptarg / (2 + ptarg)

	Step size learning rate.

	cc

	2 / (ndim + 2)

	Cumulation time horizon.

	ccovp

	2 / (ndim**2 + 6)

	Covariance matrix positive
learning rate.

	ccovn

	0.4 / (ndim**1.6 + 1)

	Covariance matrix negative
learning rate.

	pthresh

	0.44

	Threshold success rate.

Note

To reduce sampling, the constraint to the search space bounding box is enforced
by repairing the individuals and adjusting the taken step. This will lead to a
slight over sampling of the boundaries when local optimums are close to them.

	Igel2007

	Igel, Hansen, Roth. Covariance matrix adaptation for
multi-objective optimization. 2007

	Arnold2010

	Arnold and Hansen. Active covariance matrix adaptation for
the (1 + 1)-CMA-ES. 2010.

	Hansen2011

	Hansen. A CMA-ES for Mixed-Integer Nonlinear Optimization.
Research Report] RR-7751, INRIA. 2011

	
next()

	Retrieve the next point to evaluate based on available data in the
database.

	Returns

	A tuple containing a unique token and a fully qualified parameter set.

	
update(token, values)

	Update the loss of the parameters associated with token.

	Parameters

	
	token – A token generated by the sampling algorithm for the current
parameters

	values – The loss of the current parameter set. The values can be a
single Number, a Sequence or a Mapping.
When a sequence is given, the column name is set to “_loss_i” where
“i” is the index of the value. When a mapping is given, each key
is prefixed with the string “_loss_”.

	
class chocolate.MOCMAES(connection, space, mu, crossvalidation=None, clear_db=False, **params)

	Multi-Objective Covariance Matrix Adaptation Evolution Strategy.

A CMA-ES strategy for multi-objective optimization. It combines the improved
step size adaptation [Voss2010] and
the mixed integer modification [Hansen2011]. It generates a single new point per
iteration and adds a random step mutation to dimensions that undergoes a
too small modification. Even if it includes the mixed integer
modification, MO-CMA-ES does not handle well dimensions without variance and
thus it should be used with care on search spaces with conditional
dimensions.

	Parameters

	
	connection – A database connection object.

	space – The search space to explore.

	crossvalidation – A cross-validation object that handles experiment
repetition.

	mu – The number of parents used to generate the candidates. The higher this
number is the better the Parato front coverage will be, but the longer
it will take to converge.

	clear_db – If set to True [https://docs.python.org/3/library/constants.html#True] and a conflict arise between the
provided space and the space in the database, completely clear the
database and set the space to the provided one.

	**params – Additional parameters to pass to the strategy as described in
the following table, along with default values.

	Parameter

	Default value

	Details

	d

	1 + ndim / 2

	Damping for step-size.

	ptarg

	1 / 3

	Taget success rate.

	cp

	ptarg / (2 + ptarg)

	Step size learning rate.

	cc

	2 / (ndim + 2)

	Cumulation time horizon.

	ccov

	2 / (ndim**2 + 6)

	Covariance matrix learning
rate.

	pthresh

	0.44

	Threshold success rate.

	indicator

	mo.hypervolume_indicator

	Indicator function used
for ranking candidates

Note

To reduce sampling, the constraint to the search space bounding box is enforced
by repairing the individuals and adjusting the taken step. This will lead to a
slight over sampling of the boundaries when local optimums are close to them.

	Voss2010

	Voss, Hansen, Igel. Improved Step Size Adaptation for the MO-CMA-ES.
In proc. GECCO‘10, 2010.

	Hansen2011

	Hansen. A CMA-ES for Mixed-Integer Nonlinear Optimization.
[Research Report] RR-7751, INRIA. 2011

	
next()

	Retrieve the next point to evaluate based on available data in the
database.

	Returns

	A tuple containing a unique token and a fully qualified parameter set.

	
update(token, values)

	Update the loss of the parameters associated with token.

	Parameters

	
	token – A token generated by the sampling algorithm for the current
parameters

	values – The loss of the current parameter set. The values can be a
single Number, a Sequence or a Mapping.
When a sequence is given, the column name is set to “_loss_i” where
“i” is the index of the value. When a mapping is given, each key
is prefixed with the string “_loss_”.

Conditional Exploration

	
class chocolate.ThompsonSampling(algo, connection, space, crossvalidation=None, clear_db=False, random_state=None, gamma=0.9, epsilon=0.05, algo_params=None)

	Conditional subspaces exploration strategy.

Thompson sampling wrapper to sample subspaces proportionally to their
estimated quality. Each subspace of a conditional search space will be treated
independently. This version uses an estimated moving average for the reward and
forgets the reward of unselected subspaces allowing to model the dynamics
of the underlying optimizers. Thompson sampling for Bernoulli bandit is described
in [Chapelle2011].

	Parameters

	
	algo – An algorithm to sample/search each subspace.

	connection – A database connection object.

	space – The conditional search space to explore.

	crossvalidation – A cross-validation object that handles experiment
repetition.

	clear_db – If set to True [https://docs.python.org/3/library/constants.html#True] and a conflict arise between the
provided space and the space in the database, completely clear the
database and insert set the space to the provided one.

	random_state – An instance of RandomState, an
object to initialize the internal random state with, or None, in
which case the global numpy random state is used.

	gamma – Estimated moving average learning rate. The higher, the faster
will react the bandit to a change of best arm. Should be in [0, 1].

	epsilon – Forget rate for unselected arms. Th higher, the faster unselected
arms will fallback to a symmetric distribution. Should be in [0, 1].

	algo_params – A dictionary of the parameters to pass to the algorithm.

	Chapelle2011

	O. Chapelle and L. Li, “An empirical evaluation of
Thompson sampling”, in Advances in Neural Information Processing
Systems 24 (NIPS), 2011.

	
next()

	Retrieve the next point to evaluate based on available data in the
database.

	Returns

	A tuple containing a unique token and a fully qualified parameter set.

	
update(token, values)

	Update the loss of the parameters associated with token.

	Parameters

	
	token – A token generated by the sampling algorithm for the current
parameters

	values – The loss of the current parameter set. The values can be a
single Number, a Sequence or a Mapping.
When a sequence is given, the column name is set to “_loss_i” where
“i” is the index of the value. When a mapping is given, each key
is prefixed with the string “_loss_”.

Cross-Validation

	
class chocolate.Repeat(repetitions, reduce=<function mean>, rep_col='_repetition_id')

	Repeats each experiment a given number of times and reduces the losses for
the algorithms.

The repetition cross-validation wraps the connection to handle repetition of
experiments in the database. It is transparent to algorithms as it reduces
the loss of repeated parameters and returns a list of results containing a single
instance of each parameter set when all_results() is called. If not all
repetitions values are entered in the database before the next point is generated
by the algorithm, the algorithm will see the reduced loss of the parameters
that are completely evaluated only. Alternatively, if no repetition has finished
its evaluation, the algorithm will see a None [https://docs.python.org/3/library/constants.html#None] as loss. Repeat also
handles assigning a repetition number to the tokens since the _chocolate_id will be
repeated. Other token values, such as ThompsonSampling’s
_arm_id, are also preserved.

	Parameters

	
	repetitions – The number of repetitions to do for each experiment.

	reduce – The function to reduce the valid losses, usually average or median.

	rep_col – The database column name for the repetition number, it has to be unique.

Multi-objective Tools

	
chocolate.mo.argsortNondominated(losses, k, first_front_only=False)

	Sort input in Pareto-equal groups.

Sort the first k losses into different nondomination levels
using the “Fast Nondominated Sorting Approach” proposed by Deb et al.,
see [Deb2002]. This algorithm has a time complexity of \(O(MN^2)\),
where \(M\) is the number of objectives and \(N\) the number of
losses.

	Parameters

	
	losses – A list of losses to select from.

	k – The number of elements to select.

	first_front_only – If True [https://docs.python.org/3/library/constants.html#True] sort only the first front and
exit.

	Returns

	A list of Pareto fronts (lists) containing the losses
index.

	Deb2002

	Deb, Pratab, Agarwal, and Meyarivan, “A fast elitist
non-dominated sorting genetic algorithm for multi-objective
optimization: NSGA-II”, 2002.

	
chocolate.mo.hypervolume_indicator(front, **kargs)

	Indicator function using the hypervolume value.

Computes the contribution of each of the front candidates to the
front hypervolume. The hypervolume indicator assumes minimization.

	Parameters

	
	front – A list of Pareto equal candidate solutions.

	ref – The origin from which to compute the hypervolume (optional).
If not given, ref is set to the maximum value in each dimension + 1.

	Returns

	The index of the least contributing candidate.

	
chocolate.mo.hypervolume(pointset, ref)

	Computes the hypervolume of a point set.

	Parameters

	
	pointset – A list of points.

	ref – The origin from which to comute the hypervolume.
This value should be larger than all values in the
point set.

	Returns

	The hypervolume of this point set.

Release Notes

About

Chocolate is developped at NovaSyst [http://novasyst.com].

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 chocolate	

 	
 	
 chocolate.conditional	

 	
 	
 chocolate.connection	

 	
 	
 chocolate.crossvalidation	

 	
 	
 chocolate.mo	

 	
 	
 chocolate.sample	

 	
 	
 chocolate.search	

 	
 	
 chocolate.space	

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | Q
 | R
 | S
 | T
 | U

_

 	
 	__call__() (chocolate.choice method)

 	(chocolate.log method)

 	(chocolate.quantized_log method)

 	(chocolate.quantized_uniform method)

 	(chocolate.uniform method)

 	__getitem__() (chocolate.choice method)

 	(chocolate.quantized_log method)

 	(chocolate.quantized_uniform method)

 	
 	__iter__() (chocolate.choice method)

 	(chocolate.quantized_log method)

 	(chocolate.quantized_uniform method)

 	__len__() (chocolate.choice method)

 	(chocolate.quantized_log method)

 	(chocolate.quantized_uniform method)

A

 	
 	all_complementary() (chocolate.DataFrameConnection method)

 	(chocolate.MongoDBConnection method)

 	(chocolate.SQLiteConnection method)

 	
 	all_results() (chocolate.DataFrameConnection method)

 	(chocolate.MongoDBConnection method)

 	(chocolate.SQLiteConnection method)

 	argsortNondominated() (in module chocolate.mo)

B

 	
 	Bayes (class in chocolate)

C

 	
 	chocolate.conditional (module)

 	chocolate.connection (module)

 	chocolate.crossvalidation (module)

 	chocolate.mo (module)

 	chocolate.sample (module)

 	chocolate.search (module)

 	chocolate.space (module)

 	choice (class in chocolate)

 	
 	clear() (chocolate.DataFrameConnection method)

 	(chocolate.MongoDBConnection method)

 	(chocolate.SQLiteConnection method)

 	CMAES (class in chocolate)

 	ContinuousDistribution (class in chocolate)

 	count_results() (chocolate.DataFrameConnection method)

 	(chocolate.MongoDBConnection method)

 	(chocolate.SQLiteConnection method)

D

 	
 	DataFrameConnection (class in chocolate)

 	
 	Distribution (class in chocolate)

F

 	
 	find_complementary() (chocolate.DataFrameConnection method)

 	(chocolate.MongoDBConnection method)

 	(chocolate.SQLiteConnection method)

G

 	
 	get_space() (chocolate.DataFrameConnection method)

 	(chocolate.MongoDBConnection method)

 	(chocolate.SQLiteConnection method)

 	
 	Grid (class in chocolate)

H

 	
 	hypervolume() (in module chocolate.mo)

 	
 	hypervolume_indicator() (in module chocolate.mo)

I

 	
 	insert_complementary() (chocolate.DataFrameConnection method)

 	(chocolate.MongoDBConnection method)

 	(chocolate.SQLiteConnection method)

 	insert_result() (chocolate.DataFrameConnection method)

 	(chocolate.MongoDBConnection method)

 	(chocolate.SQLiteConnection method)

 	
 	insert_space() (chocolate.DataFrameConnection method)

 	(chocolate.MongoDBConnection method)

 	(chocolate.SQLiteConnection method)

 	isactive() (chocolate.Space method)

 	isdiscrete() (chocolate.Space method)

L

 	
 	lock() (chocolate.DataFrameConnection method)

 	(chocolate.MongoDBConnection method)

 	(chocolate.SQLiteConnection method)

 	
 	log (class in chocolate)

M

 	
 	MOCMAES (class in chocolate)

 	
 	MongoDBConnection (class in chocolate)

N

 	
 	names() (chocolate.Space method)

 	next() (chocolate.Bayes method)

 	(chocolate.CMAES method)

 	(chocolate.Grid method)

 	(chocolate.MOCMAES method)

 	(chocolate.QuasiRandom method)

 	(chocolate.Random method)

 	(chocolate.ThompsonSampling method)

Q

 	
 	quantized_log (class in chocolate)

 	quantized_uniform (class in chocolate)

 	
 	QuantizedDistribution (class in chocolate)

 	QuasiRandom (class in chocolate)

R

 	
 	Random (class in chocolate)

 	Repeat (class in chocolate)

 	
 	results_as_dataframe() (chocolate.DataFrameConnection method)

 	(chocolate.MongoDBConnection method)

 	(chocolate.SQLiteConnection method)

S

 	
 	Space (class in chocolate)

 	SQLiteConnection (class in chocolate)

 	
 	steps() (chocolate.Space method)

 	subspaces() (chocolate.Space method)

T

 	
 	ThompsonSampling (class in chocolate)

U

 	
 	uniform (class in chocolate)

 	update() (chocolate.Bayes method)

 	(chocolate.CMAES method)

 	(chocolate.Grid method)

 	(chocolate.MOCMAES method)

 	(chocolate.QuasiRandom method)

 	(chocolate.Random method)

 	(chocolate.ThompsonSampling method)

 	
 	update_result() (chocolate.DataFrameConnection method)

 	(chocolate.MongoDBConnection method)

 	(chocolate.SQLiteConnection method)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/search-space-tree.png

_static/ajax-loader.gif

_images/precision_recall_pareto.png
_0.6 -

® All candidates

° ® Optimal candidates
[]
_07 -
= []
< []
© [
© —0.81 o
L X o
o®
L |
—0.9 1 []
&t
o
[]
—1.0 A o
-0.9 -0.8 -0.7 -0.6 -0.5

precision

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Chocolate Documentation

_static/up.png

